首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To determine the dynamic response of a structure under the influence of the fluid flow one must solve a coupled computational fluid dynamics (CFD) and computational structural dynamics (CSD) mathematical problem. This paper presents the comparison of two methods for the calculation of the fluid-structure interaction. The first one is of explicit-implicit type and uses a staggered time advancement of the fluid and structure problems. The second uses a fully implicit discretization in the physical time of the fluid-structure equations and an explicit advancement in the dual-time. The physical fluid-structure problem is accompanied by the equations of the mesh motion, which are written as for a pseudo-structural system with its own dynamics. Representative numerical results are presented for the two degrees of freedom tipical section in unsteady transonic flow. (© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
L. Formaggia  A. Moura  F. Nobile 《PAMM》2006,6(1):27-30
Three-dimensional (3D) simulations of blood flow in medium to large vessels are now a common practice. These models consist of the 3D Navier-Stokes equations for incompressible Newtonian fluids coupled with a model for the vessel wall structure. However, it is still computationally unaffordable to simulate very large sections, let alone the whole, of the human circulatory system with fully 3D fluid-structure interaction models. Thus truncated 3D regions have to be considered. Reduced models, one-dimensional (1D) or zero-dimensional (0D), can be used to approximate the remaining parts of the cardiovascular system at a low computational cost. These models have a lower level of accuracy, since they describe the evolution of averaged quantities, nevertheless they provide useful information which can be fed to the more complex model. More precisely, the 1D models describe the wave propagation nature of blood flow and coupled with the 3D models can act also as absorbing boundary conditions. We consider in this work the coupling of a 3D fluid-structure interaction model with a 1D hyperbolic model. We study the stability of the coupling and present some numerical results. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
本文对理想流体与线弹性结构的耦联振动问题作理论分析和数值分析.文中证明了耦联振动的固有频率存在并且均为正实数.将流-固耦合系统分析转化为单一结构物在真空中的自由振动分析后,频率方程中不再含有流体变元.使问题得以大大简化.给出了数值解的收敛性证明,以保证解的可靠性.文中还综合里兹法、边界元和有限元方法,提出一种分析转化后结构的混合算法.利用该算法,只需对现有结构分析程序稍作改进,就可分析那些理想流场与结构的耦合问题.一些数例说明了算法的有效性.  相似文献   

4.
Accuracy is critical if we are to trust simulation predictions. In settings such as fluid-structure interaction, it is all the more important to obtain reliable results to understand, for example, the impact of pathologies on blood flows in the cardiovascular system. In this paper, we propose a computational strategy for simulating fluid structure interaction using high order methods in space and time.First, we present the mathematical and computational core framework, Life, underlying our multi-physics solvers. Life is a versatile library allowing for 1D, 2D and 3D partial differential solves using h/p type Galerkin methods. Then, we briefly describe the handling of high order geometry and the structure solver. Next we outline the high-order space-time approximation of the incompressible Navier-Stokes equations and comment on the algebraic system and the preconditioning strategy. Finally, we present the high-order Arbitrary Lagrangian Eulerian (ALE) framework in which we solve the fluid-structure interaction problem as well as some initial results.  相似文献   

5.
6.
R. Ahrem 《PAMM》2002,1(1):39-42
Extreme high demands on designing accurate prototypes for example in the fields of medical research, aircraft construction, shipbuilding and automotive industry require multidisciplinary simulations. A large number of tools for monodisciplinary simulations are available today. Each of these provides high quality simulation results in a specific physical domain. Now there is also a solution to do multidisciplinary computations: Parallel monodisciplinary codes are coupled with the Mesh based parallel Code Coupling Interface MpCCI to solve multidisciplinary problems with a loose coupled approach. The paper presents applications in the framework of fluid‐structure interaction, which demonstrate the advantages of the parallel coupling library for this kind of problems. The computational fluid dynamics code FLOWer developed at the Institute of Design Aerodynamics/DLR and the structural mechanics code SIMPACK developed at the Institute of Aeroelasticity/DLR are coupled to solve an aeroelastic test problem. The applicability of the coupling library in the field of aeroelasticity is strongly dependent on the integrated interpolations between the involved meshes. In the Institute of Aeroelasticity the aeroelastic analysis tool CAESAR was developed which includes aeroelasticity specific interpolation algorithms. These routines are integrated in MpCCI via a special interface. There are two types of interpolation routines included. The first kind of algorithms is based on the method of finite interpolation elements and the second uses radial basis functions.  相似文献   

7.
A new method for the calculation of fluid-structure interaction (FSI) of highly flexible bodies is presented. This innovative algorithm demonstrates the strong coupling of a commercial computational fluid dynamics code with an in-house coded structural solver. The strong response of the pressure distribution to the displacement can be approximated by a reduced order model for the fluid solver. The Jacobian of this reduced order model is then used in the structural solver to obtain a stable and full implicit iteration scheme. The method is demonstrated on a 2D model of a flexible aortic valve during the cardiac cycle. Furthermore, the model is able to calculate shear stresses on the leaflet.  相似文献   

8.
The mathematical modelling and numerical simulation of the human cardiovascular system is playing nowadays an important role in the comprehension of the genesis and development of cardiovascular diseases. In this paper we deal with two problems of 3D modelling and simulation in this field, which are very often neglected in the literature. On the one hand blood flow in arteries is characterized by travelling pressure waves due to the interaction of blood with the vessel wall. On the other hand, blood exhibits non-Newtonian properties, like shear-thinning, viscoelasticity and thixotropy. The present work is concerned with the coupling of a generalized Newtonian fluid, accounting for the shear-thinning behaviour of blood, with an elastic structure describing the vessel wall, to capture the pulse wave due to the interaction between blood and the vessel wall. We provide an energy estimate for the coupling and compare the numerical results with those obtained with an equivalent fluid-structure interaction model using a Newtonian fluid.  相似文献   

9.
We study the finite-horizon optimal control problem with quadratic functionals for an established fluid-structure interaction model. The coupled PDE system under investigation comprises a parabolic (the fluid) and a hyperbolic (the solid) dynamics; the coupling occurs at the interface between the regions occupied by the fluid and the solid. We establish several trace regularity results for the fluid component of the system, which are then applied to show well-posedness of the Differential Riccati Equations arising in the optimization problem. This yields the feedback synthesis of the unique optimal control, under a very weak constraint on the observation operator; in particular, the present analysis allows general functionals, such as the integral of the natural energy of the physical system. Furthermore, this work confirms that the theory developed in Acquistapace et al. (Adv Diff Eq, [2])—crucially utilized here—encompasses widely differing PDE problems, from thermoelastic systems to models of acoustic-structure and, now, fluid-structure interactions.  相似文献   

10.
谭琳琳  郭真华 《应用数学》2021,34(2):262-276
本文主要讨论一类多刚体与粘性系数依赖于密度的不可压缩流体耦合系统的强解存在性问题.首先,利用变量替换建立本文研究对象对应的非线性微分方程,然后,利用Garlerkin逼近方法获得线性化问题的光滑解,从而可以构造出原问题的逼近解.通过估计逼近解的一致有界性,最后证明了一类描述多刚体在不可压缩流体中运动的耦合系统强解的存在...  相似文献   

11.
In the present study, we propose a novel multiphysics model that merges two time-dependent problems – the Fluid-Structure Interaction (FSI) and the ultrasonic wave propagation in a fluid-structure domain with a one directional coupling from the FSI problem to the ultrasonic wave propagation problem. This model is referred to as the “eXtended fluid-structure interaction (eXFSI)” problem. This model comprises isothermal, incompressible Navier–Stokes equations with nonlinear elastodynamics using the Saint-Venant Kirchhoff solid model. The ultrasonic wave propagation problem comprises monolithically coupled acoustic and elastic wave equations. To ensure that the fluid and structure domains are conforming, we use the ALE technique. The solution principle for the coupled problem is to first solve the FSI problem and then to solve the wave propagation problem. Accordingly, the boundary conditions for the wave propagation problem are automatically adopted from the FSI problem at each time step. The overall problem is highly nonlinear, which is tackled via a Newton-like method. The model is verified using several alternative domain configurations. To ensure the credibility of the modeling approach, the numerical solution is contrasted against experimental data.  相似文献   

12.
We consider the fluid-structure interaction problem arising in haemodynamic applications. The finite elasticity equations for the vessel are written in Lagrangian form, while the Navier-Stokes equations for the blood in Arbitrary Lagrangian Eulerian form. The resulting three fields problem (fluid/ structure/ fluid domain) is formalized via the introduction of three Lagrange multipliers and consistently discretized by p-th order backward differentiation formulae (BDFp). We focus on partitioned algorithms for its numerical solution, which consist in the successive solution of the three subproblems. We review several strategies that all rely on the exchange of Robin interface conditions and review their performances reported recently in the literature. We also analyze the stability of explicit partitioned procedures and convergence of iterative implicit partitioned procedures on a simple linear FSI problem for a general BDFp temporal discretizations.  相似文献   

13.
A fluid-structure mathematical model usually includes parameters whose actual values are known only approximately or can vary around some reference values. The objective of the sensitivity analysis is to determine quantitatively the behavior of the responses of a fluid-structure system locally around a chosen point of the trajectory in the phase-space of parameters and dependent variables. In this work, the response considered is the total mechanical energy of the structure. The sensitivities with respect to all the parameters the fluid-structure system depends on are useful in many situations as well as for optimization purposes. We present the theoretical developments necessary for the application of the adjoint sensitivity analysis methods (ASAM) for the fully coupled governing equations of an aeroelastic system. The algorithm is general and can be applied for any kind of fluid-structure interaction problems. Illustrative numerical examples are presented for the case of typical section with two degrees of freedom. (© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
This paper deals with pressure-based finite element analysis of fluid–structure systems considering the coupled fluid and structural dynamics. The present method uses two-dimensional fluid elements and structural line elements for the numerical simulation of the problem. The equations of motion of the fluid, considered inviscid and compressible, are expressed in terms of the pressure variable alone. The solution of the coupled system is accomplished by solving the two systems separately with the interaction effects at the fluid–solid interface enforced by an iterative scheme. Non-divergent pressure and displacement are obtained simultaneously through iterations. The Galerkin weighted residual method-based FE formulation and the iterative solution procedure are explained in detail followed by some numerical examples. Numerical results are compared with the existing solutions to validate the code for sloshing with fluid–structure coupling.  相似文献   

15.
An axisymmetric, elastic pipe is filled with an incompressible fluid and is immersed in a second, coaxial rigid pipe which contains the same fluid. A pressure pulse in the outer fluid annulus deforms the elastic pipe which invokes a fluid motion in the fluid core. It is the aim of this study to investigate streaming phenomena in the core which may originate from such a fluid-structure interaction. This work presents a numerical solver for such a configuration. It was developed in the OpenFOAM software environment and is based on the Arbitrary Lagrangian Eulerian (ALE) approach for moving meshes. The solver features a monolithic integration of the one-dimensional, coupled system between the elastic structure and the outer fluid annulus into a dynamic boundary condition for the moving surface of the fluid core. Results indicate that our configuration may serve as a mechanical model of the Tullio Phenomenon (sound-induced vertigo). (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
Recent concepts in the solution of multidomain equation systems are applied to the problem of distinct transport processes coupled over geometrically disjoint domains. The (time dependent) transport equations for the composite system are solved using a simple domain decomposition approach, with parallel implementations of detailed Schwarz balances for the system subdomain interfaces. An existing numerical partial differential equation (PDE) solver is coupled with the interface algorithms to provide a code capable of handling a wide range of dynamical equations within the subdomains. Interface partitioning conditions corresponding to sharply discontinuous Dirichlet constraints, and to (discontinuous) rate-limited Neumann constraints are also incorporated into the code. A variety of transport operators can be handled simply by altering the equation system code block. The code is validated against analytical solutions for representative parabolic transport equations including recent solutions for diffusive transport in partitioning laminates, useful for describing the movement of chemical species in composite materials. The code is then applied to an example problem of coupled multiphase chemical transport in a variably saturated soil column with a low-permeability capping.  相似文献   

17.
In order to understand the normal and pathologic behavior of the human vascular system, detailed knowledge of blood flow and the response of blood vessels is required. In fact the ability to predict the flow hydrodynamics at any site in the vessels can lead to a better understanding of the behavior of blood flow. Simulation can play an important role in understanding the hemodynamic forces. The objective of the present attempt was to simulate the behavior of blood flow in microvessels using computational fluid dynamics (CFD). Numerical analysis is performed using a commercially available CFD package Fluent 6.2 which is based on the finite volume method. A continuum approach is proposed in which fluid structure interaction has been taken into account. Based on limitations imposed by computational resources, a more simplified model based on volume of fluid (VOF) approach is suggested to simulate movements of RBCs in capillaries and also to predict RBCs’ deformation. Three-dimensional incompressible laminar flow fields are obtained by solving continuity and Navier–Stokes equations computationally. It was found that multiphase CFD simulations may give further insight into the dynamic characteristics of blood flow under complex flow conditions.  相似文献   

18.
This article is focused on an established, genuinely physical fluid-structure interaction model, whereby the structure is immersed in a fluid with coupling taking place at the boundary interface between the two media. Mathematically, the model is a coupled parabolic–hyperbolic system of two partial differential equations in three dimensions with non-standard coupling at the boundary interface: the (dynamic) Stokes system (parabolic, modelling the fluid) and the Lamé system (hyperbolic, modelling the structure). This system generates a contraction semigroup on the natural energy space [G. Avalos and R. Triggiani, The coupled PDE system arising in fluid/structure interaction, Part I: explicit semigroup generator and its spectral properties, Fluids and Waves, Amer. Math. Soc. Contemp. Math. 440 (2007), pp. 15–59] (canonical model) and [G. Avalos and R. Triggiani, Semigroup well-posedness in the energy space of a parabolic-hyperbolic coupled Stokes-Lamé PDE system of fluid-structure interaction, Discr. Contin. Dyn. Sys. Series S, 2(3) (2009), pp. 417–447]. The boundary interface may or may not include a ‘damping’ (or dissipative) term. If damping is active on the entire interface, then uniform (exponential) stabilization is ensured, regardless of the geometry of the structure [G. Avalos and R. Triggiani, Uniform stabilization of a coupled PDE system arising in fluid-structure interaction with boundary dissipation at the interface, Discrete Contin. Dyn. Syst. 22(4) 2008, pp. 817–835, special issue, invited paper] (canonical model) and [G. Avalos and R. Triggiani, Boundary feedback stabilization of a coupled parabolic–hyperbolic Stokes–Lamé PDE system, J. Evol. Eqns 9(2009), pp. 341–370]. This article emphasizes the case of, at most, partial damping. At any rate, the main result is a precise uniform-operator limit behaviour of the resolvent operator of the semigroup generator on the imaginary axis of interest in itself, which holds true with or without damping. It, in turn, then implies a fortiori strong stability results: most notably, on the whole state space, under at least partial damping at the interface; and, in the absence of damping, on the whole state space, after factoring out an explicit one-dimensional null eigenspace, at least for a large class of geometries of the structure: these are characterized by a uniqueness property of a special over-determined elliptic problem.  相似文献   

19.
A Finite Element solver for a coupled simulation of fluid and structure in an axisymmetric domain is presented. The method employs an explicit solution of the flow and structure variables. The computational domain of the fluid is discretised by unstructured triangles and rectangles while the sturcture domain is discretised by unstructured triangles only. For the purpose of code validation the solution of in total three test cases are shown. One test case deals with the structure only while the other two simulate heat transfer problems with a defined temperature distribution along a boundary wall and coupled conditions. Finally the code is used to simulate the heat load in a cryogenic H2/O2 rocket combustion chamber.  相似文献   

20.
研究肾动脉狭窄(RAS)对血液流动和血管壁的影响.根据CT扫描图像,重建腹部主动脉和肾动脉的解剖模型,通过模型的脉动流进行了仿真计算,计算中考虑了流体-固体结构的相互作用(FSI).研究RAS对血管壁剪切应力和位移的影响,RAS使得肾动脉中流量减少,肾素-血管紧缩素系统可能被激活,从而导致严重的高血压.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号