首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 365 毫秒
1.
Hydrophobic curcumin in temulawak extract and hydrophilic betacyanin in red dragon fruit extract are high-value bioactive compounds with extensive applications in functional food. In this study, these extracts were encapsulated in water-in-oil-in-water (w/o/w) nanoemulsions as a delivery system using a two-step high-energy emulsification method. PGPR and Span 20 were used as lipophilic emulsifiers for the primary w/o emulsion. The most stable w/o/w formulation with the least oil phase separation of 5% v/v consisted of w/o emulsion (15% w/w) and Tween 80 (1.5% w/w) as hydrophilic emulsifier. The formulation was characterized by a 189-nm mean droplet diameter, 0.16 polydispersity index, and –32 mV zeta potential. The freeze–thaw stability may be attributed to the combination of low w/o emulsion content and high Tween 80 concentration in the outer water phase of the w/o/w nanoemulsions used in this study. The IC50 values of the nanoemulsion and the red dragon fruit extract were similar. It means that the higher concentration of curcumin in the nanoemulsions and the lower IC50 value of temulawak extract ensured sufficient antioxidant activities of the w/o/w nanoemulsions.  相似文献   

2.
《Arabian Journal of Chemistry》2020,13(11):7829-7842
Carica papaya Linnaeus commonly known as papaya is widely grown in Malaysia as a herbaceous plant with phytochemicals for a variety of use, particularly in the medical field. The therapeutic medicinal way of treating dengue fever using papaya leave extract mainly involves consumption a raw concoction and is very distasteful. Therefore, a study was carried out to develop stable emulsion with an acceptable taste through a ternary phase diagram system (TPDS), which comprised virgin coconut oil (VCO), isolated whey protein (WPI) and Carica papaya leaves extract (CPLE). The TPDS was developed using Chemix Software version 3.6 to identify the existence of homogenous phase region. In the first phase, a total of 11 selected samples (named as A to K) with concentrations ranging from 20% to 30% (w/w) of WPI from the homogenous phase region were used to select the best emulsion selection. Sample I with a composition of 25, 30 and 45% (w/w) comprising VCO, WPI and CPLE was selected and considered as the best and stable emulsion. In the second phase, sample I (renamed as sample M) underwent an addition of + 2% (sample L) and reduction of −2% (sample N) VCO. Analysis was carried out such as emulsion stability test (creaming index), pH value, viscosity, color and storage stability (4, 28 and 45 °C). The control sample was CPLE without any VCO or WPI. Sensory evaluation was also conducted to handpick the best formulation favored by 30 panellists. The sensory evaluation was conducted on samples L, M, N and CPLE using 7-point hedonic scale for preference on color, viscosity, odor, bitterness and overall acceptance attributes. The results showed that centrifugation test exhibited a stable emulsion for all the three samples (p > 0.05) L, M and N. In fact, there were differences between all the samples (p < 0.05) for pH, viscosity, and coloration of L* and b* values. For the storage stability test, all formulations were stable at 4 °C and there were no creaming layer and color changes developed except for sample L which was considered unstable at 28 °C and 45 °C. As for sensory preference, the color and bitterness was considered similar as compared to control (p < 0.05) except viscosity, odour and overall acceptance. In conclusion, sample N with compositional concentrations of 23% (w/w) VCO, 32% (w/w) WPI and 45% (w/w) CPLE was considered the most acceptable emulsion as it did not develop immiscible creaming layer and color changes at 4 °C and 28 °C. Based on the selected formulation, at least 270 ml emulsion by taking 3 tablespoons daily for 3 days in a row is needed as recommended by the Ministry of Health (MOH) in helping to increase the chances of curing dengue fever.  相似文献   

3.
In the present study, chitosan-decorated multiple nanoemulsion (MNE) was formulated using a two-step emulsification process. The formulated multiple nanoemuslion was evaluated physiochemically for its size and zeta potential, surface morphology, creaming and cracking, viscosity and pH. A Franz diffusion cell apparatus was used to carry out in vitro drug-release and permeation studies. The formulated nanoemulsion showed uniform droplet size and zeta potential. The pH and viscosity of the formulated emulsion were in the range of and suitable for topical delivery. The drug contents of the simple nanoemulsion (SNE), the chitosan-decorated nanoemulsion (CNE) and the MNE were 71 ± 2%, 82 ± 2% and 90 ± 2%, respectively. The formulated MNE showed controlled release of itraconazole as compared with that of the SNE and CNE. This was attributed to the chitosan decoration as well as to formulating multiple emulsions. The significant permeation and skin drug retention profile of the MNE were attributed to using the surfactants tween 80 and span 20 and the co-surfactant PEG 400. ATR-FTIR analysis confirmed that the MNE mainly affects the lipids and proteins of the skin, particularly the stratum corneum, which results in significantly higher permeation and retention of the drug. It was concluded that the proposed MNE formulation delivers drug to the target site of the skin and can be therapeutically used for various cutaneous fungal infections.  相似文献   

4.
Cedrela odorata L. is a plant species from the Meliaceae family that is cultivated for timber production. Although the C. odorata essential oil (EO) contains mainly sesquiterpenes, its insecticidal potential is unknown. The lipophilic properties and high degradation capacity of EOs have limited their application for use in pest control. However, the currently available knowledge on the nanoemulsification of EOs, in addition to the possibility of improving their dispersion, would allow them to prolong their permanence in the field. The objective of the present work was to develop a nanoemulsion of the C. odorata EO and to evaluate its larvicidal activity against Spodoptera frugiperda. The EO was obtained by the hydrodistillation of C. odorata dehydrated leaves, and the nanoemulsion was prepared with non-ionic surfactants (Tween 80 and Span 80) using a combined method of agitation and dispersion with ultrasound. The stability of the nanoemulsion with a droplet diameter of <200 nm was verified in samples stored at 5 °C and 25 °C for 90 days. Both the C. odorata EO and its corresponding nanoemulsion presented lethal properties against S. frugiperda. The results obtained provide guidelines for the use of wood waste to produce sustainable and effective insecticides in the fight against S. frugiperda. In addition, considering that a phytochemical complex mixture allows the simultaneous activation of different action mechanisms, the development of resistance in insects is slower.  相似文献   

5.
Microfluidization and high pressure valve homogenization were applied to prepare β-carotene nanoemulsions, and the mathematical relationship between homogenization pressures and emulsion temperatures, homogenization pressures/cycles, and droplet sizes, were established. Emulsions through Microfluidizer had lower temperature and much smaller droplet sizes, compared with those through high pressure valve homogenizer. Four emulsifiers were compared for their capacities to stabilize nanoemulsions. The two large molecule emulsifiers, octenyl succinate starch (OSA) and whey protein isolate (WPI), were less effective for the formation of nanoemulsions with smaller droplets than the two small molecule emulsifiers, polyoxyethylene sorbitan monolaurate (Tween 20, TW) and decaglycerol monolaurate (DML). The nanoemulsion containing WPI was the most stable, while the one containing DML was the least stable. During storage, significant degradation of β-carotene occurred in all nanoemulsions, especially in the DML stabilized one, while WPI showed the greatest capacity to protect β-carotene from degradation.  相似文献   

6.
Design and optimization of a new self-nanoemulsifying drug delivery system   总被引:1,自引:0,他引:1  
To improve the dissolution rate of ibuprofen, a model poorly water soluble drug, self-nanoemulsifying drug delivery systems (SNEDDS) were developed. Various surfactants and oils were screened as candidates for SNEDDS on the basis of droplet size of the resulting emulsions. The influence of the constituent structure, concentration and the composition of SNEDDS formulations, and the emulsifier HLB value, on the properties of the resulting emulsions was systematically investigated. Several SNEDDS formulations were employed to study the relationship between the emulsion droplet size and the dissolution rate of ibuprofen. The dissolution rate was accelerated by decreasing the nanoemulsion droplet size, and was significantly faster than that from a conventional tablet. The optimal SNEDDS formulation had a mean nanoemulsion droplet diameters of 58 nm in phosphate buffer, pH 6.8 (simulated intestinal fluid), and released ibuprofen more than 95% within 30 min. Therefore, these novel SNEDDS carriers appear to be useful for controlling the release rate of poorly water soluble drugs.  相似文献   

7.
Thymoquinone is a natural bioactive with significant therapeutic activity against multiple ailments including wound healing. The poor aqueous solubility and low skin permeability limit its therapeutic efficacy. The present investigation aimed to improve the biopharmaceutical attributes of thymoquinone to enhance its topical efficacy in wound healing. A nanoemulsion-based hydrogel system was designed and characterized as a nanotechnology-mediated drug delivery approach to improve the therapeutic efficacy of thymoquinone, utilizing a high-energy emulsification technique. The black seed oil, as a natural home of thymoquinone, was utilized to improve the drug loading capacity of the developed nanoemulsion system and reduced the oil droplet size to <100 nm through ultrasonication. The influence of formulation composition, and the ultrasonication process conditions, were investigated on the mean globule size and polydispersity index of the generated nanoemulsion. Irrespective of surfactant/co-surfactant ratio and % concentration of surfactant/co-surfactant mixture, the ultrasonication time had a significant (p < 0.05) influence on the mean droplet size and polydispersity index of the generated nanoemulsion. The developed nanoemulgel system of thymoquinone demonstrated the pseudoplastic behavior with thixotropic properties, and this behavior is desirable for topical application. The nanoemulgel system of thymoquinone exhibited significant enhancement (p < 0.05) in skin penetrability and deposition characteristics after topical administration compared to the conventional hydrogel system. The developed nanoemulgel system of thymoquinone exhibited quicker and early healing in wounded Wistar rats compared to the conventional hydrogel of thymoquinone, while showing comparable healing efficacy with respect to marketed silver sulfadiazine (1%) cream. Furthermore, histopathology analysis of animals treated with a developed formulation system demonstrated the formation of the thick epidermal layer, papillary dermis along with the presence of extensive and organized collagen fibers in newly healed tissues. The outcome of this investigation signifies that topical delivery of thymoquinone through nanoemulgel system is a promising candidate which accelerates the process of wound healing in preclinical study.  相似文献   

8.
Water-in-oil-in-water double nanoemulsion induced by CO(2)   总被引:1,自引:0,他引:1  
The cetyltrimethylammonium bromide (CTAB)/water/heptane emulsion system with different CO(2) pressure has been studied. The phase behavior investigation shows the nanoemulsion can be formed at suitable pressure range. The generalized indirect Fourier transformation (GIFT) analysis of the small-angle X-ray scattering (SAXS) data has drawn a clear picture of the structural information of the nanoemulsion, which reveals that the droplet of emulsion has a double structure with both the outer and inner droplet size in nanometre range. Furthermore, the investigation of the heptane/CTAB/water/CO(2) emulsion system by using electrical conductivity confirms the emulsion type transforms from O/W to W/O/W. In addition, the effect of different CTAB concentration on the nanoemulsion formation has been studied. It is found that enough CTAB concentration is necessary for the inclusion of continuous water into oil droplets. We also explored the application of the W/O/W double nanoemulsion in material synthesis. Interestingly, the hollow silica spheres with double shells were obtained in this CO(2)-induced double nanoemulsion.  相似文献   

9.
Carvacrol (CV) is an essential oil with numerous therapeutic properties, including immunomodulatory activity. However, this effect has not been studied in nanoemulsion systems. The objective of this study was to develop an innovative carvacrol-loaded nanoemulsion (CVNE) for immunomodulatory action. The developed CVNE comprised of 5% w/w oily phase (medium chain triglycerides + CV), 2% w/w surfactants (Tween 80®/Span 80®), and 93% w/w water, and was produced by ultrasonication. Dynamic light scattering over 90 days was used to characterize CVNE. Cytotoxic activity and quantification of cytokines were evaluated in peripheral blood mononuclear cell (PBMC) culture supernatants. CVNE achieved a drug loading of 4.29 mg/mL, droplet size of 165.70 ± 0.46 nm, polydispersity index of 0.14 ± 0.03, zeta potential of −10.25 ± 0.52 mV, and good stability for 90 days. CVNE showed no cytotoxicity at concentrations up to 200 µM in PBMCs. CV diminished the production of IL-2 in the PBMC supernatant. However, CVNE reduced the levels of the pro-inflammatory cytokines IL-2, IL-17, and IFN-γ at 50 µM. In conclusion, a stable CVNE was produced, which improved the CV immunomodulatory activity in PBMCs.  相似文献   

10.
The skin is constantly exposed to external and internal factors that disturb its function. In this work, two nanosystems-levan nanoparticles and a surfactin-stabilized nanoemulsion were preserved (tested for microbial growth) and characterized (size, polydispersity, Zeta potential, and stability). The nanosystems were introduced in the model formulations-cream, tonic, and gel, and confirmed by TEM. The analysis showed that nanoemulsion has a spherical morphology and size 220–300 nm, while levan nanoparticles had irregular shapes independently of the use of matrix and with particle size (130–260 nm). Additionally, we examined the antiradical effect of levan nanoparticles and nanoemulsion in the prototype of formulations by scavenging DPPH (2,2-diphenyl-1-picrylhydrazyl; EPR spectroscopy). The model cream with both nanosystems and the whole range of products with nanosystems were evaluated in vivo for hydration, elasticity, smoothness, wrinkles and vascular lesions, discoloration, respectively. The cream improved skin condition in all tested parameters in at least 50% of volunteers. The use of more comprehensive care, additionally consisting of a tonic and gel, reduced the previously existing skin discoloration to 10.42 ± 0.58%. The presented prototype formulations are promising in improving skin conditions.  相似文献   

11.
The present study aimed to develop a local dental nanoemulgel formulation of Nigella sativa oil (NSO) for the treatment of periodontal diseases. NSO purchased from a local market was characterized using a GC–MS technique. A nanoemulsion containing NSO was prepared and incorporated into a methylcellulose gel base to develop the nanoemulgel formulation. The developed formulation was optimized using a Box–Behnken statistical design (quadratic model) with 17 runs. The effects of independent factors, such as water, oil, and polymer concentrations, were studied on two dependent responses, pH and viscosity. The optimized formulation was further evaluated for droplet size, drug release, stability, and antimicrobial efficacy. The developed formulation had a pH of 7.37, viscosity of 2343 cp, and droplet size of 342 ± 36.6 nm. Sustained release of the drug from the gel for up to 8 h was observed, which followed Higuchi release kinetics with non-Fickian diffusion. The developed nanoemulgel formulation showed improved antimicrobial activity compared to the plain NSO. Given the increasing emergence of periodontal diseases and antimicrobial resistance, an effective formulation based on a natural antibacterial agent is warranted as a dental therapeutic agent.  相似文献   

12.
The Formax high-throughput platform is capable of rapidly mapping out the formulation and process parameters required to produce an array of emulsions with a range of particle sizes. The specific emulsion in this instance is a stable emulsion with a small droplet size, preferably submicron. Using a combination of design of experimental software and high-throughput experimentation, the factors required to produce the emulsion with smallest droplet size were identified. Additionally, this work produced a template which allows the quick and efficient mapping of process and formulation space to determine for new systems which variables have the greatest impact upon the emulsion produced. (Supplemental materials are available for this article. Go to the publisher's online edition of the Journal of Dispersion Science and Technology to view the free supplemental file.)  相似文献   

13.
Hyperpigmentation is a crucial dermatological disorder. This study aims to formulate a nanoemulsion formulation containing chlorogenic acid (CA) for hyperpigmentation treatment, to carry out characterization studies, and to investigate its efficacy and safety in vitro and in silico analysis.In line with this purpose, CA nanoemulsions (CA-NEs) were developed using the ultrasonic homogenization method. Accelerated stability tests were performed to examine the kinetic and thermodynamic stability of the CA-NEs to ascertain the presence of any stability issues. After the heating–cooling test, appropriate CA-NEs were stored for 60 days in three different stability environments to examine the physicochemical stability and determine the finalized formulation. The toxicity of the finalized CA-NE formulation was evaluated by genotoxicity/mutagenicity and cytotoxicity tests. The tyrosinase and melanogenesis activities of the finalized CA-NE formulation were determined on the Melanoma B16F0 cell line. Finally, the molecular docking method was used to reveal interactions of CA that play an essential role in tyrosinase inhibition. Additionally, the mushroom and human tyrosinase enzymes were used to determine the activity of CA. In addition, the comparison study with the molecular docking method was carried out using kojic acid as a reference molecule.In conclusion, the molecular docking study, pharmacokinetic analyses, and in vitro studies showed that F4P1 coded CA-NE formulation might hold promise as an innovative formulation in cosmetic applications such as skin-lightening effects with its high efficacy and safety profile.  相似文献   

14.
W/O/W double emulsions (DEs) stabilized by charged soluble complexes of whey protein isolate (WPI) and modified pectins were investigated in relation to their stability and the release of two types of electrolytes, NaCl and sodium ascorbate.WPI alone cannot properly stabilize the DEs. The droplet size is relatively large (100 μm) and increases with time. However, addition of modified pectin to form a soluble complex with WPI significantly improved the stability.DEs prepared with two types of oils (medium chain triglycerides (MCT) and R(+)-limonene) were studied by measuring droplet size, creaming, viscosity, and electrolyte release. Irrespective of their very different oil phase nature, both emulsions were stable against coalescence, but R(+)-limonene formed smaller droplets (25 μm) than MCT (35 μm). The electrolyte release rate was significantly higher from the R(+)-limonene that formed DEs with much lower viscosity. R(+)-limonene-DE released 75% of the NaCl after 28 days, while MCT-DE released only 50%. NaCl was released more slowly than sodium ascorbate.Apparently, the release mechanism from R(+)-limonene-DE was found to be “thinning the outer interface and release of the entire inner droplets” while it seems that the release from MCT-DE was slower and “diffusion controlled”.DEs stabilized by WPI/C63 released 12% of the sodium ascorbate after 1 day in milk and remained stable for at least 8 days. However, DEs stabilized with only WPI released about 50% of the sodium ascorbate after 1 day, and phase separated after 8 days.  相似文献   

15.
This work aimed to prepare a nanoemulsion containing the essential oil of the Protium heptaphyllum resin and evaluate its biocidal activities against the different stages of development of the Aedes aegypti mosquito. Ovicide, pupicide, adulticide and repellency assays were performed. The main constituents were p-cymene (27.70%) and α-pinene (22.31%). The developed nanoemulsion showed kinetic stability and monomodal distribution at a hydrophilic–lipophilic balance of 14 with a droplet size of 115.56 ± 1.68 nn and a zeta potential of −29.63 ± 3.46 mV. The nanoemulsion showed insecticidal action with LC50 0.404 µg·mL−1 for the ovicidal effect. In the pupicidal test, at the concentration of 160 µg·mL−1, 100% mortality was reached after 24 h. For adulticidal activity, a diagnostic concentration of 200 µg·mL−1 (120 min) was determined. In the repellency test, a concentration of 200 µg·mL−1 during the 180 min of the test showed a protection index of 77.67%. In conclusion, the nanobiotechnological product derived from the essential oil of P. heptaphyllum resin can be considered as a promising colloid that can be used to control infectious disease vectors through a wide range of possible modes of applications, probably as this bioactive delivery system may allow the optimal effect of the P. heptaphyllum terpenes in aqueous media and may also induce satisfactory delivery to air interfaces.  相似文献   

16.
The aim of this work was to prepare a nanoemulsion containing the essential oil of Protium heptaphyllum resin and to evaluate the larvicidal activity and the residual larvicidal effect against Aedes aegypti. The essential oil was identified by gas chromatography coupled to a mass spectrometer, and the nanoemulsions were prepared using a low-energy method and characterized by photon correlation spectroscopy. The results indicated the major constituents as p-cimene (27.70%) and α-Pinene (22.31%). Nanoemulsions had kinetic stability and a monomodal distribution in a hydrophilic-lipophilic balance of 14 with particle diameters of 115.56 ± 1.68 nn and zeta potential of −29.63 ± 3.46 mV. The nanoemulsion showed larvicidal action with LC50 = 2.91 µg∙mL−1 and residual larvicidal effect for 72 h after application to A. aegypti larvae. Consequently, the nanobiotechnological product derived from the essential oil of P. heptaphyllum resin could be used against infectious disease vectors.  相似文献   

17.
《Soft Materials》2013,11(2-3):109-123
Abstract

We have systematically investigated the production of “nanoemulsions,” droplets of one liquid phase in another immiscible liquid phase that have diameters less than 100 nm. Our approach relies on a combination of extreme shear due to multipass, high‐pressure microfluidic injection and systematic control of the emulsion's composition. By repeatedly shearing a silicone oil‐in‐water emulsion in an inhomogeneous extensional shear flow, the multipass approach enables us to reduce the droplet polydispersity and average radius. Using dynamic light scattering, we study the changes in the average radius, ?a?, as a function of the number of passes, driving injection pressure (i.e., shear rate), droplet volume fraction, surfactant concentration, and droplet oil viscosity. The smallest nanoemulsion that we obtain has ?a?=18 nm. At large droplet volume fractions φ≥0.65, we observe phase inversion, rather than a reduction in the droplet size. This provides evidence that droplet coalescence can occur during extreme shear, even when a significant excess of a strongly stabilizing surfactant is present.  相似文献   

18.
The Euterpe oleracea fruit (açaí) is a promising source of polyphenols with health-promoting properties. To our knowledge, few studies have focused on the influence of açaí phytochemicals on angiogenesis, with a significant impact on cancer. This study aimed at investigating the phytochemical profile of a purple açaí hydroethanolic extract (AHE) obtained from a commercial dietary powder supplement by high-performance liquid chromatography coupled to diode array detection and electrospray ionization mass spectrometry, and evaluate its in vitro effects on distinct angiogenic steps during vessel growth and on oxidative markers in human microvascular endothelial cells (HMEC-1). The phenolic profile of AHE revealed the presence of significant levels of anthocyanins, mainly cyanidin-3-O-rutinoside, and other flavonoids with promising health effects. The in vitro studies demonstrated that AHE exerts antiangiogenic activity with no cytotoxic effect. The AHE was able to decrease HMEC-1 migration and invasion potential, as well as to inhibit the formation of capillary-like structures. Additionally, AHE increased antioxidant defenses by upregulating superoxide dismutase and catalase enzymatic activities, accompanied by a reduction in the production of reactive oxygen species. These data bring new insights into the potential application of angiogenic inhibitors present in AHE on the development of novel therapeutic approaches for angiogenesis-dependent diseases.  相似文献   

19.
Polymeric capsules with an aqueous core have great potential for a wide range of applications, for example food/biomedical applications. However, synthesis of such capsules often involves the use of toxic organic solvents. Herein, an organic solvent‐free approach is developed for the synthesis of polymeric microcapsules with an aqueous core. The method is based on RAFT polymerization of divinyl monomer around the periphery of inverse emulsion water droplets acting as templates, with an amphiphilic macroRAFT species fulfilling the dual roles of RAFT agent and colloidal stabilizer. Vegetable oils, which are non‐toxic and renewable, are used as the continuous phase of these inverse emulsions, which are prepared using membrane emulsification to control the emulsion droplet size and size distribution. Relatively monodisperse emulsions with tunable droplet size in the range of approximately 10–30 µm are prepared, followed by the RAFT polymerization step to generate polymeric microcapsules having similar size as the initial droplets. This approach will be beneficial for various applications where toxic solvents need be minimized or removed completely to avoid adverse effects. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 831–839  相似文献   

20.
The physicochemical properties of soursop beverage emulsion were investigated using mixture design. Results indicated that the regression models were significantly fitted for all response variables studied, except creaming index at 10°C. Interactions between biopolymers and oil phase had the most significant effect on creaming stability; however, modified starch played a much prominent role in maintaining the cloudiness and average droplet size. Meanwhile, WPI contributed significantly to the conductivity of the emulsions. The optimum condition resulted in desirable physicochemical properties could be achieved using 8.70% (w/w) modified starch, 1.02% (w/w) WPI, 10.11% (w/w) flavor oil, and 76.57% (w/w) water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号