首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In situ silica reinforcement of natural rubber (NR) grafted with methyl methacrylate (MMA) (MMA-GNR) was achieved via the sol–gel reaction of tetraethoxysilane (TEOS) by the use of solid rubber and latex solutions. Silica contents within the MMA-GNR as high as 48 and 19 phr were obtained when using the solid rubber and latex solutions, respectively, under optimum conditions. The conversion efficiency of TEOS to silica was close to 95%. The in situ formed silica MMA-GNR/NR composite vulcanizates were prepared. MMA-GNR/NR composite vulcanizates reinforced with the in situ formed silica prepared by either method had similar mechanical properties to each other, but a shorter cure time and higher mechanical properties than those reinforced with the commercial silica at 9 phr. The TEM micrographs confirmed that the in situ formed silica particles were well dispersed within the MMA-GNR/NR composite matrix, whilst the commercial silica particles showed a significant level of agglomeration and a lower level of dispersion.  相似文献   

2.
Natural rubber (NR) with an in situ nanosilica nanomatrix was characterized in present work. The in situ nanosilica nanomatrix was prepared via graft copolymerization of a silane monomer, vinyltriethoxysilane (VTES), onto deproteinized NR (DPNR) in latex stage using tetrapentamine (TEPA)/tert‐butylhydroperoxide (TBHPO) as initiators. VTES conversion of more than 80% was obtained, and it depended on VTES concentration. The graft copolymer structure was characterized by Fourier transform infrared (FT‐IR), solution‐state proton nuclear magnetic resonance (1H‐NMR), and solid‐state 29Si‐NMR spectroscopy. FT‐IR analysis of the graft copolymer confirmed the formation of in situ silica particles, while solution‐state 1H‐NMR and solid‐state 29Si‐NMR revealed the partial hydrolysis of the ethoxy groups and polycondensation of the silanol groups. The formation of nanosilica particles enhanced thermal and mechanical properties of the graft copolymer. Morphology observations of the in situ nanosilica nanomatrix through scanning electron microscopy (SEM) and transmission electron microscopy (TEM) indicated that the spherical nanosilica particles form a nanomatrix surrounding NR particle. The formation of the nanomatrix was proved to enhance mechanical properties for NR materials.  相似文献   

3.
Silica particles were generated and grown in situ by sol–gel method into rubber blends comprised of natural rubber (NR) and acrylonitrile butadiene rubber (NBR) at various blend ratios. Silica formed into rubber matrix was amorphous in nature. Amount of in situ silica increased with increase in natural rubber proportion in the blends during the sol–gel process. Morphology studies showed that the generated in situ silica were nanoparticles of different shapes and sizes mostly grown into the NR phase of the blends. In situ silica filled NR/NBR blend composites showed improvement in the mechanical and dynamic mechanical behaviors in comparison to those of the unfilled and externally filled NR/NBR blend composites. For the NR/NBR blend at 40/60 composition, in particular, the improvement was appreciable where size and dispersion of the silica particles into the rubber matrix were found to be more uniform. Dynamic mechanical analysis revealed a strong rubber–in situ silica interaction as indicated by a positive shift of the glass transition temperature of both the rubber phases in the blends.  相似文献   

4.
The in situ silica filling of natural rubber (NR) was carried out via the sol–gel reaction using tetraethoxysilane. The effect of the in situ silica content on the curing, mechanical, dynamic mechanical and thermal properties of the composite vulcanizate materials was investigated in comparison to that with a commercial silica preparation. The Mooney viscosity of the in situ silica filled NR vulcanizates showed a lower value compared with that of the commercial filled ones. The mechanical properties of the in situ silica composite materials, i.e., the moduli and compression set, were improved compared with the commercial silica filler NR vulcanizates. The reinforcement effect of in situ silica did not accord with the Smallwood equation but in contrast was in good agreement with the Guth and Gold equation using a shape factor (f) which itself was in close agreement with estimates derived from independent TEM analysis. The pseudo-network structure of the in situ silica was low, which resulted in a lower storage modulus at 25 °C. By filling NR with in situ silica, the thermal properties of the composite vulcanized material were also improved, and well dispersed in situ silica particles within the NR matrix were also observed.  相似文献   

5.
The effects of methyl methacrylate (MMA) grafting and in situ formation of silica particles on the morphology and mechanical properties of natural rubber latex (NRL) were investigated. MMA grafting on NRL was carried out using cumyl hydroxy peroxide/tetraethylene pentamine (CHPO/TEPA) as a redox initiator couple. The grafting efficiency of the grafted NR was determined by solvent extractions and the grafted NRL was then mixed with tetraethoxysilane (TEOS), a precursor of silica, coated by adherence to a glass surface to form a film and cured at 80°C. The resultant products were characterized by FT‐IR and transmission electron microscopy. The influence of varying the MMA monomer weight ratio on the surface morphology of the composites was investigated by scanning electron and atomic force microscopy. The PMMA (poly MMA) grafted NRL particles were obtained as a core/shell structure from which the NR particles were the core seed and PMMA was a shell layer. The silane was converted into silica particles by a sol–gel process which was induced during film drying at 80°C. The silica particles were fairly evenly distributed in the ungrafted NR matrix but were agglomerated in the grafted NR matrix. The root‐mean‐square roughness increased with an increasing weight ratio of MMA in the rubber. The in situ silica particles in the grafted NR matrix slightly increased both the modulus and the tear strength of the composite film. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
The sol-gel reaction of tetraethoxysilane was conducted in natural rubber (NR) matrix to obtain NR/in situ silica mixtures. In other words, in situ filling of silica onto NR was conducted. The mixtures were compounded with curing regents, and their viscosities were evaluated. The in situ silica with a coupling agent afforded the lowest viscosity compared not only with a conventional silica (VN-3) but also with a carbon black (HAF). The curing behaviors were most favorable for in situ silica compound. Physical properties of the vulcanizates were also evaluated, and again in situ silica stock gave the best result.  相似文献   

7.
The sol‐gel reaction of tetraethoxysilane in natural rubber (NR) latex was conducted to produce in situ silica‐filled NR latex, followed by adding sulfur cross‐linking reagents to the latex in a liquid state. The latex was cast and subjected to sulfur curing to result in a unique morphology in the NR composite of a flexible film form. The contents of in situ silica filling were controlled up to 35 parts per one hundred rubber by weight. The silica was locally dispersed around rubber particles to give a filler network. This characteristic morphology brought about the composite of good dynamic mechanical properties. Synchrotron X‐ray absorption near‐edge structure spectroscopy suggested that the sulfidic linkages of the sulfur cross‐linked composites were polysulfidic, Sx (x ≥ 2), and a fraction of shorter polysulfidic linkages became larger with the increase of in situ silica. The present observations will be of use for developing a novel in situ silica‐filled NR composite prepared in NR latex via liquid‐phase soft processing. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
Amperometric sensor based on neutral red-doped silica (NRSiO2) nanoparticles (NPs) was fabricated and coupled with a microdialysis sampling system




















































































































































































































































































for the detection of glutamate (Glu) in the rat striatum. The NRSiO2 NPs [about (45 ± 3) nm] were prepared with water-in-oil (W/O) microemulsion method, and characterized by transmission electron microscope (TEM) technique. The neutral red (NR) doped in silica network could maintain its high electroactivity and behave as an excellent electron mediator for electrocatalysis of hydrogen dioxide. Furthermore, the silica surface could prevent the leakage of NR, hence, the stability of biosensor was improved. The novel Glu biosensor showed a linear range from 5.0×10^-7 to 1.5×10^-4 mol/L, with a detection limit of 2.0×10^-7 mol/L (S/N=3).  相似文献   

9.
Novel biphasic structured in situ silica filled natural rubber composites were focused on their strain-induced crystallization (SIC) behavior from the viewpoint of morphology. The composites were prepared by in situ silica filling in natural rubber (NR) latex using a sol–gel reaction of tetraethoxysilane. Simultaneous time-resolved wide-angle X-ray diffraction and tensile measurements revealed a relationship between the characteristic morphology and tensile stress–strain properties of the composites associating with the SIC. Results showed stepwise SIC behaviors of NR-based composites for the first time. Pure rubber phases in the biphasic structure were found to afford highly oriented amorphous segments and oriented crystallites. The generated crystallites worked as reinforcing fillers together with the in situ silica to result in high tensile stresses of the composites. The observed characteristics are useful for understanding a role of filler network in the reinforcement of rubber.  相似文献   

10.
天然橡胶原位接枝炭黑的分散性研究   总被引:1,自引:0,他引:1  
采用原位固相接枝方法,使在高温和强剪切作用下降解的天然橡胶接枝到炭黑表面.采用透射电镜(TEM)、原子力显微镜(AFM)等方法观察了接枝前后的炭黑粒子形貌变化,发现未接枝炭黑以微米级的附聚体形式存在,而由于炭黑聚集体被强剪切力部分破坏,接枝炭黑的聚集程度明显减弱,粒子的尺寸减小.采用激光光散射粒度仪对接枝前后炭黑的粒度进行分析,接枝炭黑的体积平均粒径为164 nm,远小于测得的原炭黑的粒径797 nm.采用沉降法、透光率法及zeta电位测量研究了接枝改性对炭黑在溶剂中的分散性及分散稳定性的影响,结果表明,接枝炭黑在接枝分子的溶剂中的分散性变好,分散稳定性提高.  相似文献   

11.
Effects of precipitated silica (PSi) and silica from fly ash (FA) particles (FASi) on the cure and mechanical properties before and after thermal and oil aging of natural rubber (NR) and acrylonitrile–butadiene rubber (NBR) blends with and without chloroprene rubber (CR) or epoxidized NR (ENR) as a compatibilizer have been reported in this paper. The experimental results suggested that the scorch and cure times decreased with the addition of silica and the compound viscosity increased on increasing the silica content. The mechanical properties for PSi filled NR/NBR vulcanizates were greater than those for FASi filled NR/NBR vulcanizates in all cases. The PSi could be used for reinforcing the NR/NBR vulcanizates while the silica from FA was regarded as a semi‐reinforcing and/or extending filler. The incorporation of CR or ENR enhanced the mechanical properties of the NR/NBR vulcanizates, the ENR being more effective and compatible with the blend. The mechanical properties of the NR/NBR vulcanizates were improved by post‐curing effect from thermal aging but deteriorated by the oil aging. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
“Green” composites with different amounts of in situ silica nano-particles were prepared by a sol-gel reaction of tetraethoxysilane (TEOS) in natural rubber (NR). The control of swelling degree of TEOS in NR and concentration of n-butylamine in water was useful to change the amount of generated in situ silica in the uncured NR matrix. In situ silica up to 42 parts per hundred rubber by weight (phr) was successfully filled in the NR matrix. The particle size of in situ silica became larger with the increase of silica content from ca. 10 nm to ca. 40 nm for 10 phr--40 phr loadings in the NR matrix, respectively. Even when the amount of in situ silica content was high, the dispersion of in situ silica particles was more homogeneous than that of commercial silica (VN-3). The reinforcement effect of the in situ silica for NR vulcanizates increased with increasing the in situ silica content.  相似文献   

13.
The loading effect of precipitated silica (PSi) and fly ash‐based silica (FASi) on mechanical properties of natural rubber/chloroprene (NR/CR) under thermal and thermal‐oil ageing was investigated with variation in NR content in the NR/CR blends. The selected results were compared with vulcanized NR/nitrile rubber (NR/NBR) blends. The cure time of CR vulcanizate was found to decrease with increasing NR content, but increased with silica fillers. The Mooney viscosity for CR vulcanizates reduced with increasing NR content. The addition of NR had no effect on tensile modulus and tensile strength for the FASi filled NR/CR, but the opposite trend was observed for the PSi filled NR/CR. The post‐curing effect was more significant in PSi filled NR/CR than in FASi filled NR/CR. The tensile strength of the NR/CR vulcanizates was slightly reduced after thermal ageing especially at high NR content, more extreme reduction being found by thermal‐oil ageing. The elongation at break of NR/CR with both silica fillers ranged from 400 to 900%. The hardness results were similar to the tensile modulus. The addition of PSi in NR/CR considerably increased the tear strength, but less pronounced effect was found for FASi. The resilience properties of NR/CR tended to decrease with increasing silica content. The compression set became poorer when NR content was increased. The PSi showed higher improvement in compression set than the FASi. The effects of silica and ageing on the mechanical properties for NR/CR vulcanizates were similar to those for NR/NBR vulcanizates. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
The effects of filler loading and a new silane coupling agent 3‐octanoylthio‐1‐ propyltriethoxysilane (NXT silane) on the polymer‐filler interaction and mechanical properties of silica‐filled and carbon black‐filled natural rubber (NR) compounds were studied. Silica (high dispersion silica7000GR, VN2, and VN3) and carbon black (N330) were used as the fillers, and the loading range was from 0 to 50 phr. The loading of NXT silane was from 0 to 6 phr. Experimental results show that the maximum and minimum torques of silica and carbon black‐filled NR increase with increasing filler loading. With increasing filler loading, the scorch time and optimum cure time decrease for carbon black‐filled NR, but increase for silica‐filled NR. The minimum torque, scorch time, and optimum cure time decrease because of the presence of NXT silane. For the carbon black and silica‐filled NR, the tensile strength and elongation at break have maximum values, but the hardness, M300, M100, and tear strength keep increasing with filler loading. The mechanical properties of silica‐filled NR were improved in the presence of NXT silane. With increasing filler loading, the storage modulus of filled NR increases, but the loss factor decreases. Carbon black shows the strongest polymer‐filler interaction, followed by VN3, 7000GR, and VN2. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 573–584, 2005  相似文献   

15.
Effects of pH on mechanical properties as well as morphological studies of sol–gel derived in situ silica in polyvinyl chloride-50% epoxidized natural rubber (PVC-ENR50) nanocomposites are reported. In particular, a range of acid concentrations was investigated. These nanocomposites were prepared by solution casting technique and tetraethoxysilane (TEOS) was used as the silica precursor. The prepared nanocomposites were characterized using tensile test, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The tensile test indicated that the highest mechanical strength was at 30% TEOS added for the nanocomposite prepared at pH 2.0. At pH 1.0 and 1.5 the maximum tensile strength reading was at 20% TEOS added with value of 24.3 and 24.5 MPa, respectively. SEM and TEM revealed the dispersion of silica particles in the polymer matrix. For nanocomposites prepared at pH 1.0 and 1.5, the silica particles were finely dispersed with the average size of 60 nm until 20% TEOS added. Meanwhile for nanocomposite prepared at pH 2.0, silica particles were homogenously distributed in the polymer matrix with average diameter of 30 nm until 30% TEOS and agglomerated after 30% TEOS loading.  相似文献   

16.
Summary: For the first time, a series of Gd(AA)3/NR (natural rubber) composites for X‐ray shielding were prepared by an in situ reaction method. Occurrence of the in situ polymerization of Gd(AA)3 in composites during vulcanization of NR with peroxide greatly improves the dispersion level of the shielding phase by the remarkable reduction of Gd(AA)3 particle size and the formation of small sized poly‐Gd(AA)3 from the matrix. As expected and assumed, the X‐ray shielding properties of all composites apparently increase with the increase of the degree of dispersion of Gd(AA)3 in composites.

The ability of the composites to shield X‐ray radiation increases with an increase in Gd(AA)3 content and as the degree of in situ polymerization of Gd(AA)3 increases (i.e., as t tends towards t100).  相似文献   


17.
In situ silica was synthesized in three non‐vulcanized rubber matrices, namely natural rubber, styrene‐butadiene rubber, and EPDM (ethylene‐propylene diene ter‐polymer), using the sol–gel method with tetra‐ethoxysilane (TEOS) as silica precursor and hexylamine as catalyst. The effect of the reaction parameters such as the amount of TEOS, the reaction time (15–120 min), and the type of rubber was explored. Transmission electron microscopy was used to study the gradient in silica content and particle size over the sample thickness. The diffusion gradient of TEOS and catalyst solution in the rubber matrix responsible for the gradient was studied with Fick's law. An excellent dispersion of silica was obtained for all rubbers, even for the very non‐polar EPDM, without the use of any additives to improve the dispersion. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 967–978  相似文献   

18.
Small strain Young's moduli of natural rubber (NR)/organoclay nanocomposites were estimated using the Guth–Gold, Halpin–Tsai (HT), and Krieger–Dougherty (KD) models, and compared with experimental measurements of NR vulcanizates containing organo‐montmorillonite (OM) or organo‐sepiolite (OS). To account for the effect on modulus of the NR matrix of the vulcanization‐active modifier in the organoclay, a matrix modulus correction (MMC) term was derived from the vulcanization parameters of the nanocomposites. The KD model gave a better empirical fit with the experimental data than the Guth–Gold model, with both giving good agreement with particle shape factors estimated from transmission electron microscope (TEM) images. The HT model gave the best fit with experiment for both types of nanocomposite, and use of the MMC term meant that the empirical shape factor was sufficiently close to that estimated from TEM images that the model could potentially be used to accurately predict the Young's moduli of NR/OM and NR/OS nanocomposites. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1621–1627, 2011  相似文献   

19.
The viscosity, cure properties, storage, and loss moduli and tan δ of natural rubber (NR) filled with the same amounts of precipitated silica (PSi) and fly ash silica (FASi) fillers were measured. The fillers were treated with bis[3‐triethoxysilylpropyl‐]tetrasulfide (TESPT), or, used in the rubber untreated. TESPT is a sulfur‐containing bi‐functional organosilane that chemically adheres silica to rubber and also prevents silica from interfering with the reaction mechanism of sulfur cure. The dispersion of PSi and FASi in the rubber was investigated using scanning electron microscope (SEM). The effects of silica type and loading and surface treatment on the aforementioned properties were of interest. The SEM results showed that the FASi particles were larger in size and had a wider particle size distribution when compared with the PSi particles. The viscosity of the compounds decreased progressively with mixing time, and the compounds with FASi had a lower viscosity than those filled with PSi. The treatment with Si69 had no beneficial effect on the dispersion of the fillers in the rubber matrix. At low temperatures, the type and loading of the filler had no effect on the storage and loss moduli of the compounds, but the effect was more pronounced at high temperatures. There was also evidence from the tan δ and glass transition temperature (Tg) measurements that some limited interaction between the filler particles and rubber had occurred because of TESPT. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
Effect of amines on an in situ silica generation in natural rubber was investigated, and n-hexylamine, n-heptylamine and n-octylamine were found to increase the in situ silica content. The nanometer sized silica particles up to ca. 80 parts per hundred rubber by weight were generated in situ in the rubber matrix via a sol–gel reaction of tetraethoxysilane. Additionally, dispersion of the silica in the rubbery matrix was more homogeneous than that of commercial silica dispersed by a conventional mechanical mixing. In this in situ silica generation, the polarity and solubility in water of amine were influential factors for controlling the in situ silica content in the rubbery matrix. The obtained high in situ silica filled natural rubber was useful to prepare high performance nanocomposite elastomers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号