首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
A new six‐membered cyclic carbonate monomer, 5‐benzyloxy‐trimethylene carbonate, was synthesized from 2‐benzyloxy‐1,3‐propanediol, and the corresponding polycarbonate, poly(5‐benzyloxy‐trimethylene carbonate) (PBTMC), was further synthesized by ring‐opening polymerization in bulk at 150 °C using aluminum isobutoxide [Al(OiBu)3], aluminum isopropoxide, or stannous octanoate as an initiator. The results showed that a higher molecular weight polycarbonate could be obtained in the case of Al(OiBu)3. The protecting benzyl group was removed subsequently by catalytic hydrogenation to give a polycarbonate containing a pendant hydroxyl group (PHTMC). The polycarbonates obtained were characterized by Fourier transform infrared spectroscopy, 1H NMR,13C NMR, gel permeation chromatography, and DSC. NMR results of PBTMC offered no evidence for decarboxylation occurring during the propagation. The pendant hydroxyl group in PHTMC resulted in an enhancement of the hydrophilicity of the polycarbonate. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 70–75, 2002  相似文献   

2.
A new cyclic carbonate, 2,2-ethylenedioxypropane-l,3-diol carbonate (EOPDC), was synthesized through a two-step reaction from dihydroxyacetone dimer, and polymerized in bulk initiated by Sn(Oct)2 to give a high molecular weight polycarbonate. The structure of monomer and the polymer were characterized by FT-1R, ^1H NMR, ^13C NMR. The cytotoxicity of the obtained polycarbonate was investigated by MTT assay.  相似文献   

3.
A water‐soluble polycarbonate with dimethylamino pendant groups, poly(2‐dimethylaminotrimethylene carbonate) (PDMATC), is synthesized and characterized. First, the six‐membered carbonate monomer, 2‐dimethylaminotrimethylene carbonate (DMATC), is prepared via the cyclization reaction of 2‐(dimethylamino)propane‐1,3‐diol with triphosgene in the presence of triethylamine. Although the attempted ring‐opening polymerization (ROP) of DMATC with Sn(Oct)2 as a catalyst fails, the ROP of DMATC is successfully carried out with Novozym‐435 as a catalyst to give water‐soluble aliphatic polycarbonate PDMATC with low cytotoxicity and good degradability.  相似文献   

4.
The bicyclic amidinium iodide effectively catalyzed the reaction of carbon dioxide and the epoxy‐containing oxetane under ordinary pressure and mild conditions with high chemoselectivity to give the corresponding oxetane monomer containing five‐membered cyclic carbonate quantitatively. The cationic ring‐opening polymerization of the obtained monomer by boron trifluoride diethyl ether proceeded to give linear polyoxetane bearing five‐membered cyclic carbonate pendant group in high yield. The molecular weight of the polyoxetane was higher than that of polyepoxide obtained by the cationic ring‐opening polymerization of epoxide monomer containing five‐membered cyclic carbonate. The cyclic carbonate functional crosslinked polyoxetanes were also synthesized by the cationic ring‐opening copolymerization of cyclic carbonate having oxetane and commercially available bisoxetane monomers. Analyses of the resulting polyoxetanes were performed by proton nuclear magnetic resonance, size exclusion chromatography, thermogravimetric analysis, and differential scanning calorimetry. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 2606–2615  相似文献   

5.
环状碳酸酯低聚物的合成及其开环聚合的研究   总被引:4,自引:0,他引:4  
环状碳酸酯低聚物的合成及其开环聚合的研究陈雨萍魏玮李革(中国科学院化学研究所工程塑料国家重点实验室北京100080)关键词环状碳酸酯低聚物,聚碳酸酯,开环聚合环状单体的开环聚合在合成高聚物方面具有突出的优点,即在聚合过程中没有副产物、热效应低、聚合...  相似文献   

6.
The six-membered cyclic carbonate monomer, 2,2-dimethoxy-1,3-propanediol carbonate based on dihydroxyacetone with methanol ketal protected carbonyl group, was prepared by a two-step reaction including protection and ring-closing, starting from dihydroxyacetone. The ring-opening polymerization of 2,2-dimethoxy-1,3-propanediol carbonate was carried out in bulk at 110–140°C initiated by stannous octanoate to give polycarbonate, poly(2,2-dimethoxypropane-1,3-diol carbonate). The effects of different reaction conditions including different catalyst, reaction temperature, molar ratio of monomer to initiator and polymerization time on the polymerization were investigated. Polycarbonate was obtained with the yield of 58.9–91.0%. The number average molecular weight of polycarbonate was in the range of 1.43 × 104 to 13.82 × 104 with polydispersity indexes from 1.31 to 1.91. The protecting ketal group was partly removed by hydrolysis using 50% trifluroacetic acid as a catalyst to give a functional polycarbonate containing 70% ketone carbonyl group, which improved the hydrophilicity of initial polycarbonate. The in vitro degradation tests were carried out in a phosphate buffer solution with pH 7.4 at 37°C, which showed that the modified polycarbonate degraded completely after 5 days.  相似文献   

7.
An amino isopropoxyl strontium (Sr‐PO) initiator, which was prepared by the reaction of propylene oxide with liquid strontium ammoniate solution, was used to carry out the ring‐opening polymerization (ROP) of cyclic esters to obtain aliphatic polyesters, such as poly(ε‐caprolactone) (PCL) and poly(L ‐lactide) (PLLA). The Sr‐PO initiator demonstrated an effective initiating activity for the ROP of ε‐caprolactone (ε‐CL) and L‐lactide (LLA) under mild conditions and adjusted the molecular weight by the ratio of monomer to Sr‐PO initiator. Block copolymer PCL‐b‐PLLA was prepared by sequential polymerization of ε‐CL and LLA, which was demonstrated by 1H NMR, 13C NMR, and gel permeation chromatography. The chemical structure of Sr‐PO initiator was confirmed by elemental analysis of Sr and N, 1H NMR analysis of the end groups in ε‐CL oligomer, and Fourier transform infrared (FTIR) spectroscopy. The end groups of PCL were hydroxyl and isopropoxycarbonyl, and FTIR spectroscopy showed the coordination between Sr‐PO initiator and model monomer γ‐butyrolactone. These experimental facts indicated that the ROP of cyclic esters followed a coordination‐insertion mechanism, and cyclic esters exclusively inserted into the Sr–O bond. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1934–1941, 2003  相似文献   

8.
The synthesis, characterization, and ring‐opening polymerization of a new cyclic carbonate monomer containing an allyl ester moiety, 5‐methyl‐5‐allyloxycarbonyl‐1,3‐dioxan‐2‐one (MAC), was performed for the first time. MAC was synthesized in five steps in good yield beginning from the starting material, 2,2‐bis(hydroxymethyl)propionic acid. Subsequent polymerization and copolymerizations of the new cyclic carbonate with rac‐lactide (rac‐LA) and ?‐caprolactone (CL) were attempted. Rac‐LA copolymerized well with MAC, but CL copolymerizations produced insoluble products. Oligomeric macroinitiators of MAC and rac‐LA were synthesized from stannous ethoxide, and both macroinitiators were used for the controlled ring‐opening polymerization of rac‐LA. The polymerization kinetics were examined by monitoring the disappearance of the characteristic C? O ring stretch of the monomer at 1240 cm?1 with real‐time in situ Fourier transform infrared spectroscopy. Postpolymerization oxidation reactions were conducted to epoxidize the unsaturated bonds of the MAC‐functionalized polymers. Epoxide‐containing polymers may allow further organic transformations with various nucleophiles, such as amines, alcohols, and carboxylic acids. NMR was used for microstructure identification of the polymers, and size exclusion chromatography and differential scanning calorimetry were used to characterize the new functionalized poly(ester‐carbonates). © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1978–1991, 2003  相似文献   

9.
The ring‐opening polymerization of L ‐lactide initiated by single‐component rare‐earth tris(4‐tert‐butylphenolate)s was conducted. The influences of the rare‐earth elements, solvents, temperature, monomer and initiator concentrations, and reaction time on the polymerization were investigated in detail. No racemization was found from 70 to 100 °C under the examined conditions. NMR and differential scanning calorimetry measurements further confirmed that the polymerization occurred without epimerization of the monomer or polymer. A kinetic study indicated that the polymerization rate was first‐order with respect to the monomer and initiator concentrations. The overall activation energy of the ring‐opening polymerization was 79.2 kJ mol?1. 1H NMR data showed that the L ‐lactide monomer inserted into the growing chains with acyl–oxygen bond cleavage. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 6209–6215, 2004  相似文献   

10.
Homopolymer bearing cyclic carbonate (CC) group, ABA type triblock copolymers, and (AC)B(AC) type terpolymers with statistical arrangement of A and C monomers bearing side chain CC groups are reported here. Difunctional poly(ethylene glycol) macroinitiators (PEGMIs) were prepared from PEG of three different molecular weights. PEGMIs were subsequently used for the preparation of polymers bearing CC pendant groups from cyclic carbonate methacrylate (CCMA) under atom transfer radical polymerization to yield polymers with low polydispersity index. Homopolymer and ABA type triblock copolymers were obtained by polymerizing CCMA monomer and (AC)B(AC) type statistical terpolymers were obtained when methyl methacrylate was included as a comonomer. No polymer was obtained when styrene was used as comonomer. The cyclic carbonate groups were subjected to ring‐opening reaction with monoamine to yield side chain hydroxyurethane polymers with increased solubility and diamines to yield crosslinked insoluble materials. Changes in wettability characteristics were studied by following the water contact angle of the polymers before and after ring‐opening reaction involving the cyclic carbonate pendant group. The polymers which composed of electrolyte in the form of PEG and coordinating species in the form of pendant cyclic carbonate groups showed conductivity in the range of 2–5 × 10?6 Scm?1 at 23 °C after doping with lithium bis(trifluoromethane)sulfonimide as characterized by impedance spectroscopy. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1622–1632, 2010  相似文献   

11.
Two, functional, cyclic carbonate monomers, 5‐methyl‐5‐methoxycarbonyl‐1,3‐dioxan‐2‐one and 5‐methyl‐5‐ethoxy carbonyl‐1,3‐dioxan‐2‐one, were synthesized starting from 2,2‐bis(hydroxymethyl) propionic acid. The ring‐opening polymerization of the cyclic carbonate monomers in bulk with stannous 2‐ethylhexanoate as a catalyst under different conditions was examined. The results showed that the yield and molecular weight of polycarbonates were significantly influenced by the reaction conditions. The polycarbonates obtained were characterized by IR, 1H NMR, and differential scanning calorimetry. Their molecular weight was measured by gel permeation chromatography. The in vitro biodegradation and controlled drug‐release properties of the polycarbonates were also investigated. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 4001–4006, 2003  相似文献   

12.
Novel poly(ester carbonate)s were synthesized by the ring‐opening polymerization of L ‐lactide and functionalized carbonate monomer 9‐phenyl‐2,4,8,10‐tetraoxaspiro[5,5]undecan‐3‐one derived from pentaerythritol with diethyl zinc as an initiator. 1H NMR analysis revealed that the carbonate content in the copolymer was almost equal to that in the feed. DSC results indicated that Tg of the copolymer increased with increasing carbonate content in the copolymer. Moreover, the protecting benzylidene groups in the copolymer poly(L ‐lactide‐co‐9‐phenyl‐2,4,8,10‐tetraoxaspiro[5,5]undecan‐3‐one) were removed by hydrogenation with palladium hydroxide on activated charcoal as a catalyst to give a functional copolymer, poly(L ‐lactide‐co‐2,2‐dihydroxylmethyl‐propylene carbonate), containing pendant primary hydroxyl groups. Complete deprotection was confirmed by 1H NMR and FTIR spectroscopy. The in vitro degradation rate of the deprotected copolymers was faster than that of the protected copolymers in the presence of proteinase K. The cell morphology and viability on a copolymer film evaluated with ECV‐304 cells showed that poly(ester carbonate)s derived from pentaerythritol are good biocompatible materials suitable for biomedical applications. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45:1737 –1745, 2007  相似文献   

13.
Radical ring‐opening polymerization of cyclic ketene acetals is a means to achieve novel types of aliphatic polyesters. 2‐methylene‐1,3‐dioxe‐5‐pene is a seven‐membered cyclic ketene acetal containing an unsaturation in the 5‐position in the ring structure. The double bond functionality enables further reactions subsequent to polymerization. The monomer 2‐methylene‐1,3‐dioxe‐5‐pene was synthesized and polymerized in bulk by free radical polymerization at different temperatures, to determine the structure of the products and propose a reaction mechanism. The reaction mechanism is dependent on the reaction temperature. At higher temperatures, ring‐opening takes place to a great extent followed by a new cyclization process to form the stable five‐membered cyclic ester 3‐vinyl‐1,4‐butyrolactone as the main reaction product. Thereby, propagation is suppressed and only small amounts of other oligomeric products are formed. At lower temperatures, the cyclic ester formation is reduced and oligomeric products containing both ring‐opened and ring‐retained repeating units are produced at higher yield. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4587–4601, 2009  相似文献   

14.
Enzymatic ring-opening polymerization of a 6-membered cyclic carbonate, 1,3-dioxan-2-one, was investigated by using lipase as catalyst in bulk. Supported lipase derived from Candida antarctica catalyzed the polymerization to give the corresponding aliphatic polycarbonate. Unchanged monomer was recovered in the absence of the enzyme or using an inactivated enzyme, indicating that the present polymerization proceeds through enzymatic catalysis.  相似文献   

15.
Anionic ring-opening polymerization of 1,1-diphenyl-2,2,3,3-tetramethylcyclotetrasiloxane was studied as a model polymerization of cyclic siloxane with mixed siloxane units. Sequencing of siloxane units was investigated by 29Si NMR. Various initiator-promoter-solvent systems were used. In most cases reaction was highly chemoselective, as sequencing were not affected by back biting, chain transfer and terminal unit exchange processes. Reactions showed, however, low regioselectivity in monomer ring opening. The coordination of the metal counter-ion to monomer plays a considerable role in propagation and affects sequencing of the polymer.  相似文献   

16.
The synthesis of a new cyclic carbonate monomer containing an allyl group was reported and its biodegradable amphiphilic block copolymer, poly(ethylene glycol)‐block‐poly(L ‐lactide‐co‐5‐methyl‐5‐allyloxycarbonyl‐propylene carbonate) [PEG‐b‐P(LA‐co‐MAC)] was synthesized by ring‐opening polymerization (ROP) of L ‐lactide (LA) and 5‐methyl‐5‐allyloxycarbonyl‐1,3‐dioxan‐2‐one (MAC) in the presence of poly (ethylene glycol) as a macroinitiator, with diethyl zinc as a catalyst. 13C NMR and 1H NMR were used for microstructure identification of the copolymers. The copolymer could form micelles in aqueous solution. The core of the micelles is built of the hydrophobic P(LA‐co‐MAC) chains, whereas the shell is set up by the hydrophilic PEG blocks. The micelles exhibited a homogeneous spherical morphology and unimodal size distribution. By using the cyclic carbonate monomer containing allyl side‐groups, crosslinking of the PEG‐b‐P(LA‐co‐MAC) inner core was possible. The adhesion and spreading of ECV‐304 cells on the copolymer were better than that on PLA films. Therefore, this biodegradable amphiphilic block copolymer is expected to be used as a biomaterial for drug delivery and tissue engineering. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5518–5528, 2007  相似文献   

17.
A series of macrocyclic aryl ketone oligomers were prepared by the reaction of phthaloyl dichloride or isophthaloyl dichloride with various bridge‐linking electron‐rich aromatic hydrocarbons 3a–d under pseudo‐high dilution conditions in the presence of Lewis base via Friedel–Crafts acylation reaction. Detailed structural characterization of these oligomers confirmed the cyclic nature by a combination of MALDI‐TOF‐MS, GPC, and 1H NMR analyses. These cyclic ketone oligomers have high solubility in organic solvents and the cyclic oligomers derived from phthaloyl dichloride are amorphous. The cyclic ketone oligomers readily undergo anionic ring‐opening polymerization in the melt by using potassium 4,4′‐biphenoxide as the initiator, producing linear, high molecular weight poly(ether ketone)s. Moreover, the isothermal chemorheology of the ring‐opening polymerization of cyclic oligomers 4a and 4b was also investigated. The results show that the shear viscosity of the molten reactive mixture is lower than 10 Pa · S at a constant shear rate of 0.05 rad/sec and increases slowly in the initial stage of ring‐opening polymerization. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
Lanthanum isopropoxide (La(OiPr)3) has been synthesized and employed for ring‐opening polymerization of 1,4‐dioxan‐2‐one in bulk as a single‐component initiator. The influences of reaction conditions such as initiator concentration, reaction time, and reaction temperature on the polymerization were investigated. The kinetics indicated that the polymerization is first‐order with respect to the monomer concentration. The Mechanistic investigations according to 1H NMR spectrum analysis demonstrated that the polymerization of PDO proceeded through a coordination‐insertion mechanism with a rupture of the acyl‐oxygen bond of the monomer rather than the alkyl‐oxygen bond cleavage. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5214–5222, 2008  相似文献   

19.
Aliphatic polycarbonate (PC) copolymer is synthesized by ring opening copolymerization of acrylate‐ and allyl‐functional cyclic carbonate monomers. The post‐polymerization functionalization of the resulting copolymer is performed quantitatively using a variety of thiol compounds via sequential Michael addition and photo‐induced radical thiol‐ene click reactions within relatively short reaction time at ambient temperature. This metal‐free click chemistry methodology affords the synthesis of biocompatible PC copolymer with multifunctional groups. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1581–1587  相似文献   

20.
The proposed mechanism of initiation and course of ring‐opening polymerization of cyclic trimethylene carbonate (TMC) involving zinc(II) acetylacetonate is in accordance with the mechanism of monomer activation. At the first stage of the process, coordination of carbonate to Zn(Acac)2 · H2O complex occurs with the release of weakly coordinated water molecules. This free water molecule reacts with active TMC–Zn(Acac)2 complex. The reaction results in the formation of propanediol and CO2 emission. During further stages of the investigated process, the formed propanediols, or later the oligomeric diols produced with polymerization, are cocatalysts of the chain propagation reaction. The chain propagation occurs because of repeating activation of the TMC monomer through the creation of an active structure resulting in the exchange/transfer reaction between the zinc complex and the monomer, with its following attachment to the hydroxyl groups, carbonate ring opening, and formation of the carbonic unit of polymer chain. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号