首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we propose and investigate a new general model of fuzzy stochastic discrete-time complex networks (SDCNs) described by Takagi–Sugeno (T–S) fuzzy model with discrete and distributed time-varying delays. The proposed model takes some well-studied models as special cases. By employing a new Lyapunov functional candidate, we utilize some stochastic analysis techniques and Kronecker product to deduce delay-dependent synchronization criteria that ensure the mean-square synchronization of the proposed T–S fuzzy SDCNs with mixed time-varying delays. These sufficient conditions are computationally efficient as it can be solved numerically by the LMI toolbox in Matlab. A numerical simulation example is provided to verify the effectiveness and the applicability of the proposed approach.  相似文献   

2.
In Neitzel et al. (Strategies for time-dependent PDE control using an integrated modeling and simulation environment. Part one: problems without inequality constraints. Technical Report 408, Matheon, Berlin, 2007) we have shown how time-dependent optimal control for partial differential equations can be realized in a modern high-level modeling and simulation package. In this article we extend our approach to (state) constrained problems. “Pure” state constraints in a function space setting lead to non-regular Lagrange multipliers (if they exist), i.e. the Lagrange multipliers are in general Borel measures. This will be overcome by different regularization techniques. To implement inequality constraints, active set methods and barrier methods are widely in use. We show how these techniques can be realized in a modeling and simulation package. We implement a projection method based on active sets as well as a barrier method and a Moreau Yosida regularization, and compare these methods by a program that optimizes the discrete version of the given problem. Ira Neitzel’s research was supported by the DFG Schwerpunktprogramm SPP 1253. Uwe Prüfert’s research was supported by the DFG Research Center Matheon. Thomas Slawig’s research was supported by the DFG Cluster of Excellence The Future Ocean and the DFG Schwerpunktprogramm SPP 1253. Website  相似文献   

3.
The macroscopic mechanical response of skeletal muscle tissue is mainly influenced by the properties and arrangement of microstructural elements, such as, for example, sarcomeres and connective tissue. Like for many biological materials, the mechanical properties of skeletal muscle tissue can vary quite significantly between different specimens like, for example, different persons or muscle types. Current state-of-the-art continuum-mechanical muscle models often lack the ability to take into account such variations in a natural way. Further, phenomenological constitutive laws face the challenge that appropriate material parameter sets need to be found for each tissue variation. Thus, the present work aims to identify the microstructural features and parameters governing the overall mechanical response and to incorporate them into a macroscopic material model by applying suitable homogenisation methods. The motivation hereby is that the estimation of material parameters for microstructures, such as collagen fibres, can be done in a more reliable and general way and that fluctuations between specimens are included by, for example, adapting the alignment of the collagen fibres inside the muscle. Moreover, instead of computationally expensive homogenisation methods like FE2, this work proceeds from well-founded analytical homogenisation techniques in order to keep the model as simple as possible. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
Markus Böl  Stefanie Reese 《PAMM》2005,5(1):291-292
The structure of a skeletal muscle can be seen as a complex hierarchical organisation in which thousands of muscle fibers are arranged within a connective tissue network. Inside of the single muscle fibre many force-producing cells, known as sarcomeres, are connected and take care of the contraction of the whole muscle. The material behaviour of muscles is nonlinear. Due to the fact that muscles can have large deformations in space, geometrical non-linearities must additionally be taken into account. For the simulation of such a behaviour the finite element method is used in the present approach. The material behaviour of the muscle is split into a so-called active and a passive part. To describe the passive part special unit cells consisting of one tetrahedral element and six truss elements have been derived. Additionally to these unit cells other truss elements are attached representing bundles of muscle fibers and therefore the active part of the material behaviour. The contractile behaviour of the muscle is mainly in.uenced by the stretch of the muscle fibres, the shortening velocity and the activation status of the muscle. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
For a consistent lightweight design the consideration of the nonlinear macroscopic material behaviour of composites, which is amongst others driven by damage and strain-rate effects on the mesoscale, is required. Therefore, a modelling approach using numerical homogenization techniques is applied to predict the effective nonlinear material behaviour of the composite based on the finite element simulation of a representative volume element (RVE). In this RVE suitable constitutive relations account for the material behaviour of each constituents. While the reinforcing glass fibres are assumed to remain linear elastic, a viscoplastic constitutive law is applied to represent the strain-rate dependent, inelastic deformation of the matrix material. In order to analyse the influence of the nonlinear matrix material behaviour on the global mechanical response of the composite, effective stress-strain-curves are computed for different load cases and compared to experimental observations. (© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
One important issue for the simulation of flexible multibody systems is the reduction of the flexible body's degrees of freedom. For the reduction process finite element data and user inputs are necessary. The model reduction program for elastic multibody systems MOREMBS, which is developed at the ITM, has an easy-to-use interface and the data can be gained from the programs ABAQUS or ANSYS. In this work, the simulation of a fuel injection process is investigated with MOREMBS. We focus on the interaction between valve and armature. These two bodies impact in every injection circle. The impacting bodies are modeled as flexible and the contact force is calculated by a penalty approach. One essential part of this work is the investigation of the influence of different model reduction techniques on the impact force calculation of the flexible multibody system. The main reduction techniques modal reduction, Krylov-subspace based and Gramian matrix based techniques are compared. The results achieved with modal reduction, the state of the art reduction method, are not acceptable here. Krylov-subspace based techniques are especially well-suited for large sparse systems but are not error controlled. However, by choosing appropriate moment-matching properties the impact force calculation is nearly as good as with a full finite element model. The Gramian matrix based reduction techniques can be fully automated and are error controlled but require high computational effort. Hence, appropriate approximation schemes have to be used for them. With Gramian matrix based methods we can even further reduce the size of the subsystems compared to Krylov-subspace based methods and still have an impact force calculation nearly as good as with finite element results, but we gain a simulation speedup by the factor 4000. In addition, a parameter study of the parameters involved in the model reduction process is presented. (© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
In this article, we derive an analytical approximation to compute the aerial images on general geometric domains. Under the framework in Hilbert space, we develop a general approximation model for aerial image intensity, which is particularly valid for the computation of the aerial image with polarized illumination source. Our mathematical result is a generalization of classical Mercer's theorem provided that the integral kernel is Hilbert–Schmidt. By applying Synopsys's simulation tool Progen, we demonstrate the effectiveness of our proposed approximation with polarized illumination sources (65 nm and below). Since our approach setting is quite general, the proposed approximation in this article is suitable for modification in various applications.  相似文献   

8.
This paper is intended to start a series of works aimed at proving that if in a (smooth) complex analytic family of compact complex manifolds all the fibres, except one, are supposed to be projective, then the remaining (limit) fibre must be Moishezon. A new method of attack, whose starting point originates in Demailly’s work, is introduced. While we hope to be able to address the general case in the near future, two important special cases are established here: the one where the Hodge numbers h 0,1 of the fibres are supposed to be locally constant and the one where the limit fibre is assumed to be a strongly Gauduchon manifold. The latter is a rather weak metric assumption giving rise to a new, rather general, class of compact complex manifolds that we hereby introduce and whose relevance to this type of problems we underscore.  相似文献   

9.
For a consequent lightweight design the consideration of the nonlinear macroscopic material behaviour of composites, which is amongst others driven by damage and strain–rate effects on the mesoscale, is required. Therefore, the modelling approach using numerical homogenization techniques based on the simulation of representative volume elements which are modelled by the extended finite element method (X–FEM) is currently extended to nonlinear material behaviour. While the glass fibres are assumed to remain linear elastic, a viscoplastic constitutive law accounts for strain–rate dependence and inelastic deformation of the matrix material. This paper describes the process of finding suitable constitutive relations for the polymeric matrix material Polypropylene in the small–strain regime. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
In this research we examine the ability of West’s bubble test [1] in detecting speculative bubbles using Brock’s (1982) [2] intertemporal general equilibrium model of asset pricing as the basis for a simulation study. In this setting, (1) the economy, by construction is efficient and produces the maximally possible amount of welfare for society, and (2) asset prices reflect the utility-maximizing behavior of consumers and the profit-maximizing behavior of firms. We find that the West’s bubble test flag as “bubbles” in the simulated data yet the data is produced from an economy in which markets are efficient in welfare production.  相似文献   

11.
This paper is part of a research stream whose purpose is to study the effect of simulation response surface behavior on the choice of appropriate simulation optimization search technique. This paper's research lays some groundwork by examining the behavior of simulation response surfaces themselves. The point here is not to criticize existing simulation-optimization techniques (such as Response Surface Methodology (RSM). Rather, one point is to emphasize the care and precision that must be used to invoke extant procedures properly, while another is to demonstrate the need for additional methods such as nonparametric approaches. In particular, this paper examines a simple, inventory-simulation model under various experimental conditions, including some factors under a user's control, and some not. Both point and region estimates of surface characteristics are determined and graphed while such factors as number of replications, simulation run length, and demand and lead-time variances are varied. It is found, for example, that even for this simple surface such optimization techniques as first-order RSM can be inappropriate over 21–98% of the feasible region, depending on the case. Four implications are noted from the research: the care that should be exercised with existing simulation-optimization techniques; the need for a simulation-optimization starter; the importance of examining global, nonparametric-metamodeling approaches to simulation optimization; and the desirability of investigating a multi-strategy approach to optimization. The paper concludes with a call for further research investigating these suggestions.  相似文献   

12.
For several classes of soft biological tissues, modelling complexity is in part due to the arrangement of the collagen fibres. In general, the arrangement of the fibres can be described by defining, at each point in the tissue, the structure tensor (i.e. the tensor product of the unit vector of the local fibre arrangement by itself) and a probability distribution of orientation. In this approach, assuming that the fibres do not interact with each other, the overall contribution of the collagen fibres to a given mechanical property of the tissue can be estimated by means of an averaging integral of the constitutive function describing the mechanical property at study over the set of all possible directions in space. Except for the particular case of fibre constitutive functions that are polynomial in the transversely isotropic invariants of the deformation, the averaging integral cannot be evaluated directly, in a single calculation because, in general, the integrand depends both on deformation and on fibre orientation in a non-separable way. The problem is thus, in a sense, analogous to that of solving the integral of a function of two variables, which cannot be split up into the product of two functions, each depending only on one of the variables. Although numerical schemes can be used to evaluate the integral at each deformation increment, this is computationally expensive. With the purpose of containing computational costs, this work proposes approximation methods that are based on the direct integrability of polynomial functions and that do not require the step-by-step evaluation of the averaging integrals. Three different methods are proposed: (a) a Taylor expansion of the fibre constitutive function in the transversely isotropic invariants of the deformation; (b) a Taylor expansion of the fibre constitutive function in the structure tensor; (c) for the case of a fibre constitutive function having a polynomial argument, an approximation in which the directional average of the constitutive function is replaced by the constitutive function evaluated at the directional average of the argument. Each of the proposed methods approximates the averaged constitutive function in such a way that it is multiplicatively decomposed into the product of a function of the deformation only and a function of the structure tensors only. In order to assess the accuracy of these methods, we evaluate the constitutive functions of the elastic potential and the Cauchy stress, for a biaxial test, under different conditions, i.e. different fibre distributions and different ratios of the nominal strains in the two directions. The results are then compared against those obtained for an averaging method available in the literature, as well as against the integration made at each increment of deformation.  相似文献   

13.
Modern composite materials, e.g., carbon fibre reinforced plastics (CFRP), exhibit a complex micro structure due to their fabrication process. The latter, being usually omitted in mechanical models through the homogenization of elastic properties, has a strong influence on the propagation of ultrasonic guided waves [1, 2]. Though it is possible to model the wave phenomena deterministically, taking into account a realistic distribution of fibres and polymer matrix, it is desirable to develop an improved model for the finite element analysis (FEM), which consider the stochastic properties in a more general way. In the current work, an approach for the simulation of waves in a isotropic beam with random material properties is presented. For the numerical computations with the FEM the Young's modulus was discretized by the Karhunen-Loève Expansion (KLE). Numerical investigations on the excited and propagating guided waves are presented. (© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
A simulation technique known as empirical martingale simulation (EMS) was proposed to improve simulation accuracy. By an adjustment to the standard Monte Carlo simulation, EMS ensures that the simulated price satisfies the rational option pricing bounds and that the estimated derivative contract price is strongly consistent with payoffs that satisfy Lipschitz condition. However, for some currently used contracts such as self-quanto options and asymmetric or symmetric power options, it is open whether the above asymptotic result holds. In this paper, we prove that the strong consistency of the EMS option price estimator holds for a wider class of univariate payoffs than those restricted by Lipschitz condition. Numerical experiments demonstrate that EMS can also substantially increase simulation accuracy in the extended setting.  相似文献   

15.
In the present paper, we concentrate on dealing with a class of multiobjective programming problems with random rough coefficients. We first discuss how to turn a constrained model with random rough variables into crisp equivalent models. Then an interactive algorithm which is similar to the interactive fuzzy satisfying method is introduced to obtain the decision maker’s satisfying solution. In addition, the technique of random rough simulation is applied to deal with general random rough objective functions and random rough constraints which are usually hard to convert into their crisp equivalents. Furthermore, combined with the techniques of random rough simulation, a genetic algorithm using the compromise approach is designed for solving a random rough multiobjective programming problem. Finally, illustrative examples are given in order to show the application of the proposed models and algorithms.  相似文献   

16.
We propose a generic framework for the analysis of Monte Carlo simulation schemes of backward SDEs. The general results are used to re-visit the convergence of the algorithm suggested by Bouchard and Touzi (2004) [6]. By keeping the higher order terms in the expansion of the Skorohod integrals resulting from the Malliavin integration by parts in [6], we introduce a variant of the latter algorithm which allows for a significant reduction of the numerical complexity. We prove the convergence of this improved Malliavin-based algorithm, and derive a bound on the induced error. In particular, we show that the price to pay for our simplification is to use a more accurate localizing function.  相似文献   

17.
张攀  张量  宋卫东 《数学杂志》2016,36(3):445-457
本文研究了拟常曲率黎曼流形中子流形的Chen不等式.利用代数技巧,建立了Chen广义不等式、Chen-Ricci不等式和关于卷积函数和平均曲率平方的不等式,推广了Özgür和Chen的一些结果.  相似文献   

18.
LIWEI(李伟);CAOJINHUA(曹晋华)(InstituteofAppliedMathematics,theChineseAcademyofSciences,Beijing100080,ChinaandAsia-PacificOperatio...  相似文献   

19.
We consider the hedging problem in an arbitrage-free incomplete financial market, where there are two kinds of investors with different levels of information about the future price evolution, described by two filtrations F and G=F∨σ(G) where G is a given r.v. representing the additional information. We focus on two types of quadratic approaches to hedge a given square-integrable contingent claim: local risk minimization (LRM) and mean-variance hedging (MVH). By using initial enlargement of filtrations techniques, we solve the hedging problem for both investors and compare their optimal strategies under both approaches.

In particular, for LRM, we show that for a large class of additional non trivial r.v.s G both investors will pursue the same locally risk minimizing portfolio strategy and the cost process of the ordinary agent is just the projection on F of that of the insider. For the MVH approach, we study also some general stochastic volatility model, including Hull and White, Heston and Stein and Stein models. In this more specific setting and for r.v.s G which are measurable with respect to the filtration generated by the volatility process, we obtain an expression for the insider optimal strategy in terms of the ordinary agent optimal strategy plus a process admitting a simple feedback-type representation.  相似文献   

20.
We have recently developed two quasi-reversibility techniques in combination with Euler and Crank–Nicolson schemes and applied successfully to solve for smooth solutions of backward heat equation. In this paper, we test the viability of using these techniques to recover non-smooth solutions of backward heat equation. In particular, we numerically integrate the backward heat equation with smooth initial data up to a time of singularity (corners and discontinuities) formation. Using three examples, it is shown that the numerical solutions are very good smooth approximations to these singular exact solutions. The errors are shown using pseudo-L- and U-curves and compared where available with existing works. The limitations of these methods in terms of time of simulation and accuracy with emphasis on the precise set of numerical parameters suitable for producing smooth approximations are discussed. This paper also provides an opportunity to gain some insight into developing more sophisticated filtering techniques that can produce the fine-scale features (singularities) of the final solutions. Techniques are general and can be applied to many problems of scientific and technological interests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号