首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
We investigated not only the effects of schema-based instruction (SBI) on the mathematical outcomes of seventh-grade students with mathematical learning disabilities (MLD), but also extended prior work to analyze students’ written explanations on open-ended items involving ratio and proportion situations—ratio, proportion, and percent of change problems— to understand the ability to reason about proportions and identify misconceptions. The sample of 338 students with MLD [scored below the 25th percentile on a proportional problem solving (PPS) pretest] was taken from Jitendra, Harwell, Im, et al. (2019), which randomly assigned classrooms to either the SBI or control condition. Students with MLD in SBI classrooms outperformed their counterparts in control classrooms on proportional problem solving and general mathematics problem solving. Similar results, favoring the SBI condition, were found on the open-ended items; however, overall mean scores across pretest, posttest, and delayed posttest were low. Findings provide evidence for the limited understanding of fractional representations of ratios and highlight students’ persistent use of numerical and additive reasoning in explaining their low performance on the open-ended items.  相似文献   

3.
There is a documented need for more research on the mathematical beliefs of students below college. In particular, there is a need for more studies on how the mathematical beliefs of these students impact their mathematical behavior in challenging mathematical tasks. This study examines the beliefs on mathematical learning of five high school students and the students’ mathematical behavior in a challenging probability task. The students were participants in an after-school, classroom-based, longitudinal study on students’ development of mathematical ideas funded by the United States National Science Foundation. The results show that particular educational experiences can alter results from previous studies on the mathematical beliefs and behavior of students below college, some of which have been used to justify non-reform pedagogical approaches in mathematics classrooms. Implications for classroom practice and ideas for future research are discussed.  相似文献   

4.
The purpose of this research is to promote the construction of mathematical proof from argumentation at the primary level. To show this is a viable instructional strategy at the primary level, we use a teaching experiment methodology and a task related to geometric proof in this research study. To model and analyze the collective argumentation that took place in the classroom, we reconstructed the discussion using the extended Toulmin model. Collective argumentation at the primary level is a valuable opportunity for primary students and their teachers to generate mathematical proof through collaboration.  相似文献   

5.
6.
This article examines the notion of informal mathematical products, in the specific context of teaching mathematics to low achieving students at the secondary school level. The complex and relative nature of this notion is illustrated and some of its characteristics are suggested. These include the use of ad-hoc strategies, mental calculations, idiosyncratic ideas, everyday rather than mathematical language, non-symbolic explanations, visual justifications and common-sense based reasoning. The main argument raised in the article concerns the challenge of valuing informal mathematical products, created by low achievers, and using them within the mathematics classroom as means for advancing such students. The data draws from several research and design projects conducted in Israel since 1991. Selected examples of students’ products, gathered from low-track mathematics classrooms involved in these projects, are presented and analyzed. The analyses highlight various features of such products, and portray the possible gains of teaching approaches that legitimize, and build onwards from, informal products of low achievers.  相似文献   

7.
A study was conducted on high school students, comparing those with some music credits to those with none. No statistically significant difference was found in their mean math grade point averages (GPA) or their mean cumulative GPAs. Students were then separated into two groups based on the number of music credits. Students who had earned at least two music credits per grade level were placed into Group A. This category included ninth graders with two or more music credits, tenth graders with four or more music credits, eleventh graders with six or more music credits, and twelfth graders with eight or more music credits. The remaining students were placed into Group B. Group A students performed better than group B students. However, the differences were not statistically significant. Scatter plots indicated a slight upward trend in GPAs as the number of music credits increased. Lower GPAs were nonexistent as the music credits increased.  相似文献   

8.
Frequently, in the US students’ work with proofs is largely concentrated to the domain of high school geometry, thus providing students with a distorted image of what proof entails, which is at odds with the central role that proof plays in mathematics. Despite the centrality of proof in mathematics, there is a lack of studies addressing how to integrate proof into other mathematical domains. In this paper, we discuss a teaching experiment designed to integrate algebra and proof in the high school curriculum. Algebraic proof was envisioned as the vehicle that would provide high school students the opportunity to learn not only about proof in a context other than geometry, but also about aspects of algebra. Results from the experiment indicate that students meaningfully learned about aspects of both algebra and proof in that they produced algebraic proofs involving multiple variables, based on conjectures they themselves generated.  相似文献   

9.
Assessment results from two open-construction response mathematical tasks involving fractions and decimals were used to investigate written expression of mathematical reasoning for students with learning disabilities. The solutions and written responses of 51 students with learning disabilities in fourth and fifth grade were analyzed on four primary dimensions: (a) accuracy, (b) five elements of mathematical reasoning, (c) five elements of mathematical writing, and (d) vocabulary use. Results indicate most students were not accurate in their problem solution and communicated minimal mathematical reasoning in their written expression. In addition, students tended to use general vocabulary rather than academic precise math vocabulary and students who provided a visual representation were more likely to answer accurately. To further clarify the students struggles with mathematical reasoning, error analysis indicated a variety of error patterns existed and tended to vary widely by problem type. Our findings call for more instruction and intervention focused on supporting students mathematical reasoning through written expression. Implications for research and practice are presented.  相似文献   

10.
The purpose of this paper is to further the notion of defining as a mathematical activity by elaborating a framework that structures the role of defining in student progress from informal to more formal ways of reasoning. The framework is the result of a retrospective account of a significant learning experience that occurred in an undergraduate geometry course. The framework integrates the instructional design theory of Realistic Mathematics Education (RME) and distinctions between concept image and concept definition and offers other researchers and instructional designers a structured way to analyze or plan for the role of defining in students’ mathematical progress.  相似文献   

11.
12.
Two separate studies, Jonsson et al. (J. Math Behav. 2014;36: 20–32) and Karlsson Wirebring et al. (Trends Neurosci Educ. 2015;4(1–2):6–14), showed that learning mathematics using creative mathematical reasoning and constructing their own solution methods can be more efficient than if students use algorithmic reasoning and are given the solution procedures. It was argued that effortful struggle was the key that explained this difference. It was also argued that the results could not be explained by the effects of transfer-appropriate processing, although this was not empirically investigated. This study evaluated the hypotheses of transfer-appropriate processing and effortful struggle in relation to the specific characteristics associated with algorithmic reasoning task and creative mathematical reasoning task. In a between-subjects design, upper-secondary students were matched according to their working memory capacity.

The main finding was that the superior performance associated with practicing creative mathematical reasoning was mainly supported by effortful struggle, however, there was also an effect of transfer-appropriate processing. It is argued that students need to struggle with important mathematics that in turn facilitates the construction of knowledge. It is further argued that the way we construct mathematical tasks have consequences for how much effort students allocate to their task-solving attempt.  相似文献   

13.
14.
In this article, we report the results of research that explores the intra-mathematical connections that high school students make when they solve Calculus tasks, in particular those involving the derivative and the integral. We consider mathematical connections as a cognitive process through which a person relates or associates two or more ideas, concepts, definitions, theorems, procedures, representations and meanings among themselves, with other disciplines or with real life. Task-based interviews were used to collect data and thematic analysis was used to analyze them. Through the analysis of the productions of the 25 participants, we identified 223 intra-mathematical connections. The data allowed us to establish a mathematical connections system which contributes to the understanding of higher concepts, in our case, the Fundamental Theorem of Calculus. We found mathematical connections of the types: different representations, procedural, features, reversibility and meaning as a connection.  相似文献   

15.
Mathematical reasoning and problem solving are recognised as essential 21st century skills. However, international assessments of mathematical literacy suggest these are areas of difficulty for many students. Evidenced-based learning trajectories that identify the key ideas and strategies needed to teach mathematics for understanding and support these important capacities over time are needed to support teachers and curriculum developers so that they do not have to rely solely on mathematics content knowledge. Given this goal and recent evidence to suggest a relationship between the development of multiplicative thinking and mathematical reasoning, this paper explores the processes involved in developing a single, integrated scale for multiplicative thinking and mathematical reasoning using data from a four-year design-based project to establish learning and assessment frameworks for algebraic, geometrical and statistical reasoning in the middle years of schooling.  相似文献   

16.
This paper is a report of a classroom research project whose aim was to find out whether low attaining 14-year-old students of mathematics would be able to think mathematically at a level higher than recall and reproduction during their ordinary classroom mathematics activities. Analysis of classroom interactive episodes revealed many instances of mathematical thinking of a kind which was not normally exploited, required or expected in their classes. Five episodes are described, comparing the students’ thinking to that usually described as “advanced.” In particular, some episodes suggest the power of a type of prompt which can be generalized as “going across the grain.”  相似文献   

17.
The Reynolds equation is used to calculate the pressure distribution in a thin layer of lubricant film between two surfaces. Using the asymptotic expansion in the Stokes equations, we show the existence of singular perturbation phenomena whenever the two surfaces are in relative motion. We prove that the Reynolds equation is an approximation of the Stokes equations and that the kind of convergence is strongly related with the boundary conditions on the velocity field.  相似文献   

18.
In different international studies on mathematical achievement East Asian students outperformed the students from Western countries. A deeper analysis shows that this is not restricted to routine tasks but also affects students’ performance for complex mathematical problem solving and proof tasks. This fact seems to be surprising since the mathematics instruction in most of the East Asian countries is described as examination driven and based on memorising rules and facts. In contrast, the mathematics classroom in western countries aims at a meaningful and individualised learning. In this article we discuss this “paradox” in detail for Taiwan and Germany as two typical countries from East Asia and Western Europe.  相似文献   

19.
The Summer Explorations and Research Collaborations for High School Girls (SEARCH) Program, held annually since 2004 at Mount Holyoke College in the US, was created for talented high school girls to explore mathematics beyond that taught in high school. Our study, which focuses on factors that facilitate or inhibit the pursuit of higher level mathematics by girls, is centered on the 2006 SEARCH Program. We present a combination of qualitative and quantitative data drawn from student journals written during SEARCH, program evaluations written at the end of SEARCH, post-program interviews, and comparisons with two peer group samples. From this data we point to important factors, such as developing a mathematical voice, gaining a broader view of advanced mathematics, being challenged in a supportive atmosphere, and having a positive stance toward risk-taking, that may help to maintain the interest of talented girls in advanced mathematical studies.  相似文献   

20.
Researchers continue to emphasize the importance of covariational reasoning in the context of students’ function concept, particularly when graphing in the Cartesian coordinate system (CCS). In this article, we extend the body of literature on function by characterizing two pre-service teachers’ thinking during a teaching experiment focused on graphing in the polar coordinate system (PCS). We illustrate how the participants engaged in covariational reasoning to make sense of graphing in the PCS and make connections with graphing in the CCS. By foregrounding covariational relationships, the students came to understand graphs in different coordinate systems as representative of the same relationship despite differences in the perceptual shapes of these graphs. In synthesizing the students’ activity, we provide remarks on instructional approaches to graphing and how the PCS forms a potential context for promoting covariational reasoning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号