首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary: Three new soluble π‐conjugated polymers containing 1,3,5‐triazine units in the main chain, Pa–Pc, were synthesized. The polymers showed optical properties in solution that were mainly dependant on the properties of the substituting R groups, on the triazine ring. Hence, Pa and Pb (R = H and  OCH3, respectively) showed blue photoluminescent (PL) emission with high quantum yields (QY) even in polar solvents, whereas Pc (R = N,N‐dimethylamino) gave green‐blue PL emission with very low QY. The PL spectra of the polymers in solution were concentration and polarity dependent, which suggested the formation of an exciplex.

The three new soluble π‐conjugated polymers containing 1,3,5‐triazine units in the main chain synthesized here.  相似文献   


2.
A new strategy for the self‐polymerization of chromophores is investigated to develop a 2,7‐carbazole‐based nonlinear optical (NLO) conjugated polymer with an increasing conjugation length of chromophores. Elongation of the conjugation‐path length in chromophores has established engineering guidelines to enhance optical nonlinearity. Compared with the traditional synthesis of an NLO polymer, the chromophores should be well‐designed at a limited conjugation spacer, and then incorporated into a polymer matrix. In this research, the π‐conjugation spacer of chromophores extended perpendicularly to the dipole of chromophores during the polymerization process. Furthermore, this study marks the first research of integrating the π‐electrons of chromophores and conjugated polymers. These conjugated backbones promote a bulk‐polarization response, leading to large NLO coefficients.

  相似文献   


3.
A new π‐conjugated charge‐transfer‐type copolymer of electron‐donating thiophene and electron‐accepting quinoxaline was prepared by organometallic polycondensation. The polymer was soluble in organic solvents such as tetrahydrofuran, and showed a UV‐vis peak at long wavelengths of 598 nm in chloroform and 629 nm in the film. Its film exhibited a χ(3) peak in the resonance region with a χ(3) value comparable to that of regioregular head‐to‐tail poly(3‐hexylthiophene‐2,5‐diyl).

  相似文献   


4.
A set of rigid π‐conjugated bis(terpyridine) macroligands with poly(ε‐caprolactone) (pCL) on their side chains was synthesized and investigated. The introduced pCL chains gave rise to enhanced processability and film‐forming properties of the materials. Blue photoluminescence with high quantum yields was observed in dilute solution and in the solid state, indicating that intermolecular aggregation of the π‐conjugated systems was effectively suppressed. The macroligands were further used for coordination with zinc(II) ions leading to new metallo‐polymers with high solubility, improved film‐forming behavior and promising photophysical properties with respect to potential OLED applications.

  相似文献   


5.
6.
Fluorescent vesicles considered as a mimic of natural primitive cells are prepared from poly(3‐hexylthiophene)‐block‐poly(3‐O‐methacryloyl‐D‐galactopyranose) P3HT‐b‐PMAGP copolymers. The unique characteristic of such vesicular nanostructures is their architecture, which comprises a hydrophobic π‐conjugated P3HT wall stabilized by a hydrophilic PMAGP interface featuring glucose units. The results of this work offer a very efficient and straightforward method for engineering well‐controlled fluorescent nanoparticles (without the addition of dyes), which provide an excellent support to the study of carbohydrate‐protein interactions.

  相似文献   


7.
A conjugated polymer containing an electron donating backbone (triphenylamine) and an electron accepting side chain (cyanoacetic acid) with conjugated thiophene units as the linkers has been synthesized. Dye‐sensitized solar cells (DSSCs) are fabricated utilizing this material as the dye sensitizer, resulting a typical power conversion efficiency of 3.39% under AM 1.5 G illumination, which represents the highest efficiency for polymer dye‐sensitized DSSCs reported so far. The results show the good promise of conjugated polymers as sensitizers for DSSC applications.

  相似文献   


8.
Amphiphilic hybrid π‐conjugated polymers that have polyhedral oligomeric silsesquioxanes on their side chains have been successfully synthesized by the Sonogashira–Hagihara polycondensation reaction. The obtained polymers were studied with ultraviolet‐visible absorption and photoluminescence spectra. In these polymers, the π‐conjugation length was extended along the poly(p‐phenylene‐ethynylene) backbone. Furthermore, the content of the POSS substituents can influence the aggregation behavior of the polymers and subsequent luminescent properties.

  相似文献   


9.
New pyrrolo[3,4‐c]pyrrole‐1,4‐dione (DPP) derivatives carrying 3,4‐ethylenedioxy‐thiophenylphenyl (EDOT‐phenyl) substituent groups in the 3‐ and 6‐position, or in the 2‐ and 5‐position of the DPP chromophore were synthesised and electrochemically polymerised. The properties of the polymers were investigated using cyclic voltammetry and UV/Vis absorption spectroscopy. It was found that the optical and electronic properties differ greatly between the two polymers. Materials with EDOT‐phenyl groups in the 3‐ and 6‐positions represent conjugated polymers with a low oxidation potential and reversible electrochromic properties, whereas the polymer with EDOT‐phenyl groups in the 2‐ and 5‐positions is non‐conjugated and possesses a high oxidation potential and irreversible redox behaviour.

  相似文献   


10.
Organic π‐conjugated polymers have emerged as one of the most fascinating classes of materials as they have found utility in a host of plastic electronics technologies. The distance between π‐systems and their relative orientation dictate energy/charge transfer, conductivity, and photophysical properties of these materials in bulk. This Feature Article discusses π‐conjugated polymers and model compounds in which specific inter‐π‐system interactions are covalently enforced and the effect that the scaffolding has on optoelectronic properties.

  相似文献   


11.
12.
A series of π‐conjugated polymers linked by benzocarborane (1,2‐(buta‐1′,3′‐diene‐1′,4′‐diyl)‐1,2‐dicarbadodecaborane) were synthesized via Sonogashira–Hagihara polycondensation reaction. The opened molecular structure of diiodo monomer containing benzocarborane resulted in fast polymerization and high molecular weights. The obtained polymers were fully characterized by 1H, 13C, and 11B NMR spectroscopies. UV‐vis absorption and photoluminescence studies revealed the acceptor‐profile of benzocarborane. Unlike the polymers linked by o‐carborane, these polymers exhibited strong luminescence in the solution state, presumably because the inductive effect of carborane is dominant, rather than cage‐π interactions.

  相似文献   


13.
Summary: A bacterial poly[(3‐hydroxybutyrate)‐co‐(3‐hydroxyvalerate)] biosynthesized by Pseudomonas sp. HJ‐2 was found to be a shape memory polymer. Permanent shapes were set by annealing at room temperature the samples that had been pre‐treated above 95 °C in specified shapes. The temporary shapes were set by stretching and holding the elongated samples. Thermal shrinkage began at 45 °C and stopped at 75 °C to recover to their permanent shapes. Apparently, the orientation induced the formation of hard segments that were responsible for setting the temporary shapes. The shape memory effect of this polymer was explained based on the DSC and XRD results at different phases.

The recovery of a coil shape upon heating a strip of HJ‐2 PHB35V, demonstrating the polymers shape memory effect.  相似文献   


14.
Electrostatic self‐assembly can be used to form supramolecular vesicles in aqueous solution. Vesicles consist of cationic G8 poly(amidoamine) dendrimers and the trivalent sulfonate dye Ar27. No classical amphiphiles are present but the interplay of electrostatics, ππ interaction and geometric factors influences the structure formation. Labeled guest molecules, both small molecules and peptides, can be included inside these vesicles and vesicles imaged by fluorescence techniques. The structure was studied by dynamic and static light scattering, small‐angle neutron scattering, confocal laser scanning microscopy, and fluorescence correlation spectroscopy. The study indicates the prospect of constructing functional nanoobjects by the self‐assembly of charged molecules in aqueous solution.

  相似文献   


15.
This paper reports the anisotropic electrical properties of a layer‐by‐layer (LBL) film composed of water‐soluble conjugated polymers and single‐walled carbon nanotubes (SWNTs). The water‐soluble poly (p‐phenylene ethynylene)s (PPEs) are capable of a strong ππ interaction with the sidewall of SWNTs and results in a very stable PPE‐SO3/SWNTs composite in aqueous solution. Aligned LBL films were prepared by self‐assembly using the anionic PPE/SWNTs and cationic PPE on various substrates. The polarized Raman spectra exhibited the cos2α polarization dependence of the G‐band intensity between the polarization direction and the SWNTs alignment direction. The electric conductivity within the LBL films can be controlled by the deposition direction in the LBL formation.

  相似文献   


16.
Poly(N‐isopropylacrylamide) (PNIPAM) oligomer containing one adamantyl (AD) and two β‐cyclodextrin (β‐CD) moieties at the chain terminals, AD‐PNIPAM‐(β‐CD)2, was synthesized by atom transfer radical polymerization (ATRP) and successive click reactions. In aqueous solution, AD‐PNIPAM‐(β‐CD)2 spontaneously forms supramolecular thermoresponsive hyperbranched polymers via molecular recognition between AD and β‐CD moieties. To the best of our knowledge, this work represents the first report of the construction of supramolecular thermoresponsive hyperbranched polymers from well‐defined polymeric AB2 building units.

  相似文献   


17.
A simple approach to tune the optical properties of the hyperbranched conjugated polymers by only adjusting the terminal‐backbone interactions has been reported in this article. Hyperbranched conjugated polyazomethines have been successfully prepared by the reaction of tetramine and dialdehyde. Not only varying the monomer feed ratio to change the quantity of terminal amino groups, but also adopting protonation or complexion with proper dopants (SnCl2 and β‐cyclodextrin), can alter the interactions between amino terminals and imine bonds in the backbone. Correspondingly, the optical properties of the resulting hyperbranched polymers are controlled.

  相似文献   


18.
Atom transfer radical polymerization (ATRP) is a robust method for the preparation of well‐defined (co)polymers. This process has also enabled the preparation of a wide range of polymer brushes where (co)polymers are covalently attached to either curved or flat surfaces. In this review, the general methodology for the synthesis of polymer brushes from flat surfaces, polymers and colloids is summarized focusing on reports using ATRP. Additionally, the morphology of ultrathin films from polymer brushes is discussed using atomic force microscopy (AFM) and other techniques to confirm the formation of nanoscale structure and organization.

Formation of polymer brushes by ATRP.  相似文献   


19.
Precise nano‐ and microscale control of the architecture of biodegradable biomaterials is desirable for several biotechnological applications such as drug delivery, diagnostics, and medical imaging. Herein, we combine electrohydrodynamic co‐jetting and highly specific surface modification (via Huisgen 1,3‐dipolar cycloaddition) to prepare particles and fibers with spatioselective surface modification. We first prepared biphasic particles and fibers from commercial poly(lactide‐co‐glycolide) copolymers via electrohydrodynamic co‐jetting of two organic solutions loaded with fluorescent macromolecules and acetylene‐modified PLGA derivatives. (i) Spatially controlled reaction of poly[lactide‐co‐(propargyl glycolide)] with O‐(2‐aminoethyl)‐O′‐(2‐azidoethyl)heptaethylene glycol and (ii) subsequent conversion of the newly introduced amino groups with fluorescence probes resulted in particles and fibers with surface modification of one hemisphere only.

  相似文献   


20.
Summary: Nanowire lengths and length‐to‐width aspect ratios in regioregular poly(3‐hexylthiophene) (P3HT) were simply controlled through changes in the solvent vapor pressure during solidification. It is demonstrated that the nanowires grew by rod‐to‐rod association, in which the molecular long axis of the P3HT chains appeared to be well‐oriented parallel to the silicon substrate (Si/SiOx). The formation of the nanowires took place by one dimensional self‐assembly, governed by ππ stacking of the P3HT units.

TEM high contrast images showing P3HT nanowires fabricated by spin‐coating under a solvent vapor pressure.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号