首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of acrylate monomers with alkoxy tails of varying lengths are synthesised and polymerised. The butoxy analogue had a stable enantiotropic cholesteric liquid crystalline phase which formed a grandjean texture when prepared as a thin film between glass slides. The polymer was mixed with a low molar mass nematic liquid crystal in various proportions and the pitch of the chiral nematic phases were determined using a cano‐wedge cell technique. The polymer prepared from (S)‐2‐(4‐butoxyphenyl‐4′‐benzoyloxy)‐1‐methyl ethyl acrylate had a pitch length of 113 nm which indicates that the polymer film could be employed in optical devices requiring selective reflection of light with short wavelengths in the region of 170 nm. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

2.
Herein we report a group of five planar chiral molecules as photon‐mode chiral switches for the reversible control of the self‐assembled superstructures of doped chiral nematic liquid crystals. The chiral switches are composed of an asymmetrically substituted aromatic moiety and a photoisomerizing azobenzene unit connected in a cyclic manner through methylene spacers of varying lengths. All the molecules show conformational restriction in the rotation of the asymmetrically substituted aromatic moiety in both the E and Z states of the azobenzene units resulting in planar chirality with separable enantiomers. Our newly synthesized compounds in pure enantiomeric form show high helical twisting power (HTP) in addition to an improved change in HTP between the E and Z states. The molecule with a diphenylnaphthalene unit shows the highest ever known initial helical twisting power among chiral dopants with planar chirality. In addition to the reversible tuning of reflection colors, we employed the enantiomers of these five compounds in combination with four nematic liquid crystalline hosts to study their properties as molecular machines; the change in HTP of the chiral dopant upon photoisomerization induces rotation of the texture of the liquid crystal surfaces. Importantly, this study has revealed a linear dependence of the ratio of the difference between HTPs before and after irradiation against the absolute value of the initial HTP, not the absolute value of the change in helical twisting power between two states, on the angle of rotation of micro‐objects on chiral nematic liquid crystalline films. This study has also revealed that a change in irradiation intensity does not affect the maximum angle of rotation, but it does affect the speed of rotational reorganization of the cholesteric helix.  相似文献   

3.
Summary: The one step synthesis of a series of branched azobenzene side‐chain liquid‐crystalline copolymers by the self‐condensing vinyl copolymerization (SCVCP) of a methyl acrylic AB* inimer, 2‐(2‐bromoisobutyryloxy)ethyl methacrylate (BIEM), with the monomer 6‐(4‐methoxy‐azobenzene‐4′‐oxy)hexyl methacrylate (M), by atom transfer radical polymerization (ATRP) in the presence of CuBr/N,N,N′,N′,N″‐pentamethyldiethylenetriamine as a catalyst system, and in chlorobenzene solvent, is reported. The degree of branching (DB), and the molecular weights and polydispersities of the resultant polymers were determined by NMR spectroscopy and size exclusion chromatography, respectively. The phase behaviors of the branched copolymers were characterized by differential scanning calorimetry (DSC) and thermal polarized optical microscopy (POM). The degree of branching of the branched copolymers could be controlled by the comonomer ratio in the feed and influenced their liquid‐crystal properties. Liquid‐crystal properties were not exhibited when the comonomer ratio was low. Comonomer ratios greater than 8 gave polymers with a lower number of branches, which exhibited both a smectic and a nematic phase.

A polarized optical micrograph of the smectic phase texture of a polymer synthesized here with a higher comonomer feed ratio (magnification × 400).  相似文献   


4.
The twist‐bend nematic phase (NTB) has been described as the structural link between the untilted uniaxial nematic phase (N) and the helical chiral nematic phase (N*). The NTB phase exhibits phenomena of fundamental importance to science, that is, 1) the spontaneous formation of a helical pitch on the nanometer scale in a fluid and 2) the spontaneous breaking of mirror symmetry, leading to the emergence of chiral domains in an achiral system. In this Communication, we present a study on T49 [bis(4‐(9‐(4‐((4‐cyanobenzoyl)oxy)phenyl)nonyl)phenyl) 4,4′‐(nonane‐1,9‐diyl)dibenzoate], a liquid‐crystalline oligomer exhibiting the twist‐bend nematic phase, which has a molecular length that is of comparable dimensions to the sub‐10 nm pitch determined for CB9CB, and provide new insights into the differentiation between the nano‐ and macro‐science for self‐assembling supermolecular systems.  相似文献   

5.
A dimeric tetrathiafulvalene installed into a chiral pseudo‐ortho‐[2.2]paracyclophane framework was synthesized as a novel chiral electrochromic material. This compound exhibited pronounced chiroptical properties in the UV‐Vis‐NIR range depending on its redox states without racemization. Each enantiomer was examined as a chiral dopant for nematic liquid crystals (LCs), and the induced helicity of the LC solvent was in accord with that of the tetrathiafulvalene compound.  相似文献   

6.
Summary: This paper presents a computational study of phase separation‐phase ordering‐texturing in blends of polymer coils and rod‐like nematic liquid crystals under the presence of magnetic fields, using an extended version of the Matsuyama‐Evans‐Cates model (Phys. Rev. E 2000 , 61, 2977). This work demonstrates that demixing in these blends leads to droplet morphologies with tunable droplet shapes and director textures. In contrast to filled nematics, where solids are suspended in a nematic liquid crystal matrix, demixing in coil‐mesogenic rods blends leads to nematic emulsions, in which the deformable viscoelastic polymer drops are suspended in a nematic matrix. Under strong anchoring conditions, the imposition of a magnetic field leads to a director re‐orientation that due to strong anchoring produces a droplet shape change. Magnetic field‐induced shape transitions in these blends are shown to be second order with a finite critical field threshold that diverges as anchoring strength vanishes. A morphological‐texture diagram summarizes the magnetic field‐anchoring conditions that promote anisotropic shapes. This work presents additional material processing routes to design and control bi‐phasic morphologies in polymer‐liquid crystal blend.

Computed morphology phase diagram in terms of magnetic field strength ΛM and anchoring strength. ΛϕQ.  相似文献   


7.
We present the origins and synthesis of helical polyacetylene (H‐PA) by focusing on its peculiar spiral morphology. Interfacial polymerization of acetylene was carried out in an asymmetric reaction field consisting of chiral nematic liquid crystal (N*‐LC) and Ziegler–Natta catalyst. As the N*‐LC is composed of nematic liquid crystal and a chiral compound such as a binaphthyl derivative with either the R‐ or S‐configuration, the screw directions of the polyacetylene chain and fibril bundle—and even the spiral morphology—are rigorously controlled by the chirality of the selected compound. Interestingly, the screw directions of the fibril and the bundle in H‐PA were found to be opposite to that of N*‐LC. It is worthwhile to emphasize that the hierarchical spiral morphology involving the primary to higher order structure is generated in a synthetic polymer such as polyacetylene by using N*‐LC as an asymmetric polymerization solvent. © 2008 The Japan Chemical Journal Forum and Wiley Periodicals, Inc. Chem Rec 8: 395–406; 2008: Published online in Wiley InterScience ( www.interscience.wiley.com ) DOI 10.1002/tcr.20163  相似文献   

8.
Axially chiral, N‐arylated 3,5‐dihydro‐4H‐dinaphtho[2,1‐c:1′,2′‐e]azepines have been prepared by short synthetic protocols from enantiopure 1,1′‐bi(2,2′‐naphthol) (BINOL) and anilines. Alkynes substituted with two N‐phenyldinaphthazepine donors readily undergo a formal [2+2] cycloaddition, followed by retro‐electrocyclization, with tetracyanoethene (TCNE) to yield donor‐substituted 1,1,4,4‐tetracyanobuta‐1,3‐dienes (TCBDs) featuring intense intramolecular charge‐transfer (CT) interactions. A dicyanovinyl derivative substituted with one N‐phenyldinaphthazepine donor was obtained by a “one‐pot” oxidation/Knoevenagel condensation from the corresponding propargylic alcohol. Comparative electrochemical, X‐ray crystallographic, and UV/Vis studies show that the electron‐donor qualities of N‐phenyldinaphthazepine are similar to those of N,N‐dimethylanilino residues. The circular dichroism (CD) spectrum of a push–pull chromophore incorporating the chiral donor moiety features Cotton effects of exceptional intensity. With their elongated shape and the rigidity of the chiral N‐aryldinaphthazepine donors, these chromophores are effective inducers of twist distortion in nematic liquid crystals (LCs). Thus, a series of the dinaphthazepine derivatives was used as dopants in the nematic LC E7 (Merck) and high helical twisting powers (β) of the order of hundreds of μm?1 were measured. Theoretical calculations were employed to elucidate the relation between the structure of the dopants and their helical twisting power. For the derivatives with two dinaphthazepine moieties, a strong dependence of the β‐values on the structure and conformation of the linker between them was found.  相似文献   

9.
In achiral rod‐like molecules, a nematic phase is the most disordered liquid crystal phase, which only has one‐directional order in the direction of the molecular long axis. A dumbbell‐shaped molecule (compound 3 : R−C6H10−CH=CH−C6H4−CH=CH−C6H10−R, (R=n C5H11)), and its liquid crystal phase (X phase) are reported, which exhibit high scattering without thermal fluctuation between two nematic phases under a polarized light optical microscope. The X phase was investigated by X‐ray diffraction, scanning electron microscopy, atomic force microscopy, and molecular dynamics simulation. A layered structure was ascertained for which a molecular self‐organization mechanism was postulated in which the super‐structure is based on lateral intermolecular interlocking. A second nematic phase above the X phase consisted of “rice grain”‐shaped particles.  相似文献   

10.
Sesamin was employed as a chiral dopant for preparing cholesteric liquid crystals with right‐handed helical architecture. Helical twisting power of sesamin is to be 13.4 μm?1. Electrochemical polymerizations were carried out with sesamin‐induced cholesteric liquid crystal electrolyte solution for obtaining conjugated polymer films with helical structure. The film was transcribed the helical order from the liquid crystal electrolyte solution with helical structure produced by sesamin during the polymerization process. The helical axes of the macromolecular superstructure of the polymer films were oriented in a magnetic field of 4.5 T. This results demonstrated liquid crystal magneto‐electrochemical polymerization with helical structure induced by sesamin as a natural chiral compound. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 1894–1899  相似文献   

11.
By using polarizing microscopy analysis we have found that several achiral homologues of the 4-n-alkyloxybenzoic acids, displaying only the nematic phase, exhibit the optical properties of a chiral liquid crystal system. These acids possess a mesophase due to the formation of dimers via hydrogen bonding. The microtextural analysis was carried out in the temperature ranges of the isotropic, nematic and crystal phases. The nucleation of a chiral texture in small domains emerging on cooling in the isotropic phase was observed. These small domains are characterized by a conoscopic cross which presents an azimuth of 45° with respect to the polarizer axis, contrary to the usual nematic drops, for which the conoscopic cross is not rotated. On further cooling, these domains coalesce in the nematic phase close to the clearing point, thus building large chiral monodomains. Such coalesced droplets exhibit very thin stripe lines, as in the case of pure cholesterics with a tilted helix axis. Moreover, left- and right-handed chiral domains were observed, combined in regions partially separated by 'oily streaks', also typical of pure cholesterics. On cooling, the chiral nematic (N*) phase transformed through a pronounced texture transition into a normal nematic phase. However, the small chiral grains that formed from the isotropic phase are retained close to the surface, acting as 'memorizing centres'. With suitable boundary conditions, they can provide a macroscopic twist driven by the surface. Moreover, a twisted smectic B not present in the bulk phase diagram was found and interpreted as induced by the surface. Also in the crystal phase a strong memorization of the chiral N* texture was observed.  相似文献   

12.
The recording of polarization gratings in films of a cholesteric liquid crystalline polymer with different helix pitch was studied in detail. For this purpose, the cholesteric mixture of the nematic azobenzene‐containing copolymer with a chiral‐photochromic dopant was prepared. The utilization of such mixture has made possible to realize dual optical photorecording in one system, first due to the phototuning of the helix pitch by UV light and second the polarization grating recording process by exposure with polarized visible light. The diffraction efficiency strongly depends on the cholesteric helix pitch and films thickness: the increase of the confinement ratio d/p (where d, film thickness; p, helix pitch) results in growth of the diffraction efficiency. Comparison of the induction of polarization gratings in cholesteric, nematic (copolymer without chiral dopant), and amorphous (nonannealed) cholesteric films revealed that only the cholesteric films were characterized by significant oscillations in the diffraction efficiency signal as well as by the presence of the maximum in the first‐order diffraction efficiency in the initial stage of the grating recording process. It was found that in addition to the polarization grating surface relief gratings (SRGs) were also formed in the studied systems, however, the amplitude of the SRG inscribed in the cholesteric films was lower (~20 nm) compared to the grating amplitude obtained in nematic films (~60 nm). Moreover, increasing helix pitch resulted in a decrease of the SRG amplitude. The obtained experimental data demonstrate the great potential of cholesteric LC mixtures of such type for different applications as photoactive materials for photonics. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 773–781  相似文献   

13.
New hydrogen‐bonded liquid‐crystalline poly(ester amide)s (PEA)s were obtained from 1,4‐terephthaloyl[bis‐(3‐nitro‐N‐anthranilic acid)] (5) or 1,4‐terephthaloyl[bis‐(N‐anthranilic acid)] (6), with or without nitro groups, respectively, through the separate condensation of each with hydroquinone or dihydroxynaphthalene. The dicarboxylic monomers were synthesized from 2‐aminobenzoic acid. The phase behavior of the monomers and polymers were studied with differential scanning calorimetry, polarized light microscopy, and wide‐angle X‐ray diffraction methods. Monomer 5, containing nitro groups, exhibited a smectic liquid‐crystalline phase, whereas the texture of monomer 6 without nitro groups appeared to be nematic. The PEAs containing nitro groups exhibited polymorphism (smectic and nematic), whereas those without nitro groups exhibited only one phase transition (a nematic threaded texture). The changes occurring in the phase behavior of the polymers were explained by the introduction of nitro groups. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1289–1298, 2004  相似文献   

14.
Chiral monomeric (+)‐bornyl methacrylate (BMA) was synthesized from (+)‐camphor. The normal mode of polymer‐stabilized cholesteric texture (PSCT) liquid crystal cells was fabricated using 97.3 wt% of liquid crystal (E48/CB15 = 92/8) and 2.7 wt% of various compositions of chiral and achiral monomers. BMA was used as a chiral monomer and, 4,4′‐bis[6‐(acryloyloxy)hexyloxy]biphenyl and ethyleneglycol dimethacrylate were used as achiral difunctional monomers. The electro‐optical characteristics and the morphology of the PSCT cells with chiral and achiral polymer materials were investigated. The effects of monomer concentration and polymerization conditions of the chiral (+)‐bornyl methacrylate on the electro‐optical characteristics and morphology of PSCT cells were also investigated. It was found that the electro‐optical characteristics of PSCT cells were improved by using the chiral monomer of (+)‐bornyl methacrylate effectively. A PSCT cell was fabricated, and the reversible turbid and transparent changes were examined by applying a 15 V electric field. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

15.
The structural characterization of two regioisomeric products of the interaction of 2,6‐bis‐(4‐methoxybenzylidene)‐3R‐methylcyclohexanone with methyl hydrazine was achieved using 1H NMR spectral data, including chemical shifts, coupling constants and results of COSY and nuclear overhauser effect (NOE) experiments. Configurations of the new chiral centers in the (3S,3aR,6R,7E)‐7‐(4‐methoxybenzylidene)‐3,4,5,7‐hexahydro‐3‐(4‐methoxyphenyl)‐2,6‐dimethyl‐ and 2,4‐dimethyl‐2H‐indazoles were assigned on the basis of experimental data combined with molecular modeling by the density functional theory (DFT) method. The distinction in the helical twisting power of studied compounds under addition to a nematic liquid crystal is discussed on the basis of peculiarities of the molecular structures. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
Herein, we report for the first time that nematic liquid‐crystalline environments drive the reversible self‐aggregation of an enantiopure β‐pentapeptide into oligomers with a well‐defined structure. The peptide contains four (1S,2S)‐2‐aminocyclopentane carboxylic acid (ACPC) residues and the paramagnetic β‐amino acid (3R,4R)‐4‐amino‐1‐oxyl‐2,2,5,5‐tetramethylpyrrolidine‐3‐carboxylic acid (POAC). The structure of the oligomers was investigated by electron paramagnetic resonance (EPR) spectroscopy, which allowed us to obtain the intermonomer distance distribution in the aggregates as a function of peptide concentration in two nematic liquid crystals, E7 and ZLI‐4792. The aggregates were modeled on the basis of the EPR data, and their orientation and order in the nematic phase were studied by the surface tensor method.  相似文献   

17.
Phase behaviors of polydisperse polystyrene (PS)/nematic liquid‐crystal systems [P‐ethoxy ‐ benzylidene ‐ pn‐butylaniline (EBBA)] are investigated with a thermo‐optical analysis technique. We also develop a thermodynamic framework to describe the phase behaviors of polydisperse PS/EBBA systems. The proposed model is based on a modified double‐lattice model to describe isotropic mixing and Maier–Saupe theory for anisotropic ordering. To correlate the polymer chain length and energy parameters in a nematic–isotropic biphasic region and to apply the primary interaction parameter in an isotropic–isotropic phase‐transition behaviors of polydisperse PS/EBBA systems. The proposed model shows remarkable agreement with experimental data for the model systems in comparison with an existing model. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1031–1039, 2006  相似文献   

18.
A series of novel mesogen‐jacketed liquid‐crystal polymers, poly[2,5‐bis(4′‐alkoxyphenyl)‐styrene] (P‐n, n = 1–11), were prepared via free‐radical polymerization of newly synthesized monomers, 2,5‐bis(4′‐alkoxyphenyl)styrene (M‐n, n = 1–11). The influence of the alkoxy tail length on the liquid‐crystalline behaviors of the monomers and the polymers was investigated with differential scanning calorimetry (DSC), thermogravimetry, polarized optical microscopy (POM), and wide‐angle X‐ray diffraction (WAXD). The monomers with n = 1–4, 9, and 11 were monotropic nematic liquid crystals. All other monomers exhibited enantiotropic nematic properties. Their melting points (Tm's) decreased first as n increased to 6, after which Tm increased slightly at longer spacer lengths. The isotropic–nematic transition temperatures decreased regularly with increasing n values in an odd–even way. The glass‐transition temperatures (Tg's) of the polymers first decreased as the tail lengths increased and then leveled off when n ≥ 7. All polymers were thermally stable and entered the mesophase at a temperature above Tg. Upon further heating, no mesophase‐to‐isotropic melt transition was observed before the polymers decomposed. WAXD studies indicated that an irreversible order–order transition for the polymers with short tails (n ≤ 5) and a reversible order–order transition for those with elongated tails (n ≥ 6) occurred at a temperature much higher than Tg. However, such a transition could not be identified by POM and could be detected by DSC only on heating scans for the polymers with long tails (n ≥ 7). © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1454–1464, 2003  相似文献   

19.
Blue phase (BP) stability of a chiral nematic liquid crystal (LC) mixture is dependent upon chemical structure as well as physical properties. In this study, the blue phase temperature range dependent on alkyl chain length was investigated in order to evaluate the relationship between blue phase stability and the molecular structures of four kinds of 4-n-alkyloxy-4'-cyanobiphenyl (n-OCB) homologue chiral nematic LC mixtures composed of rod-like nematic LCs. It was confirmed that the blue phase temperature range was strongly dependent upon the molecular parity, K 33/K 11 and the helical twist power of the n-OCB homologues chiral nematic LC mixtures.  相似文献   

20.
The light switching characteristics induced by a thermal smectic A (SmA) ? chiral nematic (N*) phase transition were studied for homeotropically aligned [smectic A liquid crystal (SmA-LC)/nematic liquid crystal (N-LC)/chiral dopant] and [side chain type smectic A liquid crystalline polymer (SmA-LCP)/N-LC/chiral dopant] composites. A drastic change from a transparent SmA phase to a light-scattering N* phase occurred in both composites upon heating. In the case of the heat-induced N* phase for the (SmA-LC/N-LC/chiral dopant) composite, the N* phase exhibited weak light scattering due to formation of a scroll texture. On the other hand, in the case of the heat-induced N* phase for the (SmA-LCP/N-LC/chiral dopant) composite, the N* phase showed strong light scattering due to formation of a focalconic texture. The existence of a SmA-LCP was responsible for a higher contrast ratio between the transparent SmA phase and the light scattering N* phase for the (SmA-LCP/ N-LC/chiral dopant) composite than for the (SA-LCN/N-LC/chiral dopant) composite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号