首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article describes a brief review of recent research advances in chiral liquid crystals (CLCs) for laser applications. The CLC molecules have an intrinsic capability to spontaneously organize supramolecular helical assemblages consisting of liquid crystalline layers through their helical twisting power. Such CLC supramolecular helical structures can be regarded as one‐dimensional photonic crystals (PhCs). Owing to their supramolecular helical structures, the CLCs show negative birefringence along the helical axis. Selective reflection of circularly polarized light is the most unique and important optical property in order to generate internal distributed feedback effect for optically‐excited laser emission. When a fluorescent dye is embedded in the CLC medium, optical excitation gives rise to stimulated laser emission peak(s) at the band edge(s) and/or within the CLC selective reflection. Furthermore, the optically‐excited laser emission peaks can be controlled by external stimuli through the self‐organization of CLC molecules. This review introduces the research background of CLCs carried out on the PhC realm, and highlights intriguing precedents of various CLC materials for laser applications. It would be greatly advantageous to fabricate active CLC laser devices by controlling the supramolecular helical structures. Taking account of the peculiar features, we can envisage that a wide variety of supramolecular helical structures of CLC materials will play leading roles in next‐generation optoelectronic molecular devices. © 2010 The Japan Chemical Journal Forum and Wiley Periodicals, Inc. Published online in Wiley InterScience ( www.interscience.wiley.com ) DOI 10.1002/tcr.201000013  相似文献   

2.
This Letter reports the synthesis and optical properties of polythiophenes prepared in cholesteric liquid crystal (CLC) medium. The polythiophenes prepared from achiral monomers in the CLC display consistent optical activity. In the first step of this research, we prepared CLCs for a reaction solvent. Next, Stille-type polycondensation reaction in the CLC was carried out. The resultant polymers show intense circular dichroism (CD). The CD results suggest that the polymers form a chiral structure.  相似文献   

3.
Cholesteric liquid crystals (CLCs) reflect selected wavelengths of light owing to their periodic helical structures. The encapsulation of CLCs leads to photonic devices that can be easily processed and might be used as stand‐alone microsensors. However, when CLCs are enclosed by polymeric membranes, they usually lose their planar alignment, leading to a deterioration of the optical performance. A microfluidics approach was employed to integrate an ultrathin alignment layer into microcapsules to separate the CLC core and the elastomeric solid membrane using triple‐emulsion drops as the templates. The thinness of the alignment layer provides high lubrication resistance, preserving the layer integrity during elastic deformation of the membrane. The CLCs in the microcapsules can thus maintain their planar alignment, rendering the shape and optical properties highly reconfigurable.  相似文献   

4.
Photo-responsive cholesteric liquid crystals (CLCs) have attracted much attention in recent years due to their wide applications in filters,tunable optical lasers,dynamic display devices,etc.However,UV light is usually used as the external stimulus source,which is not environment-friendly enough.On the other hand,the mechanical properties of CLCs are not strong enough for these practical applications.Therefore,it still remains a challenge to endow the CLCs with visible light response and high mechanical properties at the same time.Herein,an axially chiral tetra-fluorinated binaphthyl azobenzene gelator (S-4F-AG) is synthesized.Upon 550 and 450 nm light irradiations,S-4F-AG exhibits excellent photo-switchable behaviors.Notably,the maximum content of cis-isomer and its half-life are as high as 35% and 89 h in acetonitrile,respectively.A self-supporting CLC physical gel with a storage modulus around 104 Pa can be obtained when 3wt% S-4F-AG and 12wt%binaphthyl azobenzene derivative (dopant 2) are co-doped into a nematic LC host P0616A.This CLC physical gel exhibits a temperature-driven blue,green,and red reflection colors reversibly.Importantly,such three primary RGB colors can also be realized by adjusting the exposure time of 550 nm green light.This work lays a solid foundation for the applications ranging from information storage to high-tech anticounterfeit.  相似文献   

5.
Cholesteric liquid crystals (CLCs) have been widely applied in optical filters due to Bragg reflection caused by their helical structure. However, the reflectivity of CLC filters is relatively low, commonly less than 50%, as the filters can only reflect light polarized circularly either left- or right-handedly. Therefore, a high-reflective CLC filter with a single-layer template was proposed which may reflect both right- and left-handed polarized light. The CLC filters of the red, green, blue color were fabricated by the templating technology, which show good wavelength consistency. Additionally, a multi-phase liquid crystal filter with high reflectance was demonstrated by the single-layer templating technology. The templated CLC or multi-phase liquid crystal filters show great potential applications in the optical community, reflective display, and lasing.  相似文献   

6.
Cholesteric liquid crystals (CLCs) selectively reflect light when the wavelength matches the helical pitch. The reflectance is limited to 50% of ambient, unpolarized light because only circularly polarized light of the same handedness as the helix is reflected. Here the elaboration procedure and the properties of a CLC gel whose optical characteristics go beyond the 50% reflectance limit are reported. Photopolymerizable monomers are introduced into the volume of a CLC exhibiting a thermally induced helicity inversion and the blend is then cured with UV light when the helix is right-handed. The reflectance exceeds 50% when measured at the temperature assigned at a cholesteric helix with the same pitch but a left-handed sense before reaction. The reflection properties are investigated in the infrared region. From scanning electron microscopy investigations, it is shown that the organization of the mesophase is transferred onto the structure of the network. The gel structure is discussed as consisting of a polymer network with a helical structure containing two populations of low molar mass LC molecules. Each of them is characterized by a band of circularly polarized light which is selectively reflected. The monitoring of the optical response with temperature offers the opportunity to discriminate the respective contributions of the bound and free fractions of LC molecules to the reflectance, and to give evidence of the progressive increase of the reflected flux when the temperature decreases from the curing temperature. Novel opportunities to modulate the reflection over the whole light flux range are offered. Potential applications are related to the light management for smart windows or reflective polarizer-free displays with a larger scale of reflectivity levels.  相似文献   

7.
《Liquid crystals》2001,28(5):803-807
Cholesteric liquid crystals (CLCs) may selectively reflect light when the helicoidal pitch is of the order of the wavelength of the incident beam propagating along the helix axis. The reflection bandwidth is dependent on the birefringence and is limited to a few tens of nanometers, which is insufficient for applications such as white-on-black reflective displays. Recent studies have shown that CLC polymer networks with a pitch gradient induce a broadening of the reflection bandwidth over several hundreds of nanometers. Most related processes rely on photocrosslinking reactions with a UV-gradient in a mixture made of chiral and achiral monomers with different UV-reactivities. Here a new experimental route exploiting the polymorphism of the mixture is presented. The basic concept lies in a thermally-induced pitch variation simultaneously carried out with the UV-crosslinking reaction. The optical behaviour is investigated in parallel with the cross-sectional microstructure as observed by transmission electron microscopy.  相似文献   

8.
Cholesteric liquid crystals (CLCs) may selectively reflect light when the helicoidal pitch is of the order of the wavelength of the incident beam propagating along the helix axis. The reflection bandwidth is dependent on the birefringence and is limited to a few tens of nanometers, which is insufficient for applications such as white-on-black reflective displays. Recent studies have shown that CLC polymer networks with a pitch gradient induce a broadening of the reflection bandwidth over several hundreds of nanometers. Most related processes rely on photocrosslinking reactions with a UV-gradient in a mixture made of chiral and achiral monomers with different UV-reactivities. Here a new experimental route exploiting the polymorphism of the mixture is presented. The basic concept lies in a thermally-induced pitch variation simultaneously carried out with the UV-crosslinking reaction. The optical behaviour is investigated in parallel with the cross-sectional microstructure as observed by transmission electron microscopy.  相似文献   

9.
10.
Structures with a periodic in-plane liquid crystal director field modulation induced by an electric field are studied in cholesteric liquid crystals (CLCs). A phenomenon of the electric-field-induced instability in a planarly aligned cholesteric cell is used to create these undulated structures. The initial field-off state is planarly aligned with the cholesteric helix axis oriented perpendicular to the cell substrates. The interaction of the CLC with an electric field results in modulation of the refractive index, which is visualised as stripe domains oriented either along or perpendicular to the rubbing direction at cell alignment surfaces. The threshold electric field for the undulation appearance and a period of stripes are measured experimentally for three Grandjean zones (ratio d/p ~ 0.5, 1.0, and 1.5, where d is a cell thickness and p is the natural cholesteric pitch). For the zone with d/p ~ 1.0 using numerical simulations, we describe in detail the director distribution at an applied electric field. It is found that the in-plane undulated structure is characterised by a conical director rotation on moving along the alignment direction. The conical axis is tilted with respect to the alignment axis. The sign of the tilt angle depends on the handedness of CLC.  相似文献   

11.
The influence of the pump laser beam on the lasing spectral characteristics in dye-doped cholesteric liquid crystal is investigated. Under the influence of the pump laser pulses with different repetition rates and energies, non-linear reorientation and light-induced flow reorientation of chiral nematic liquid crystals (CLC) molecules was observed. Independent of the reorientation mechanism, multi-wavelength lasing was achieved due to stepwise uncoiling of the CLC structure. Under the influence of a pump laser beam with low repetition rate, Cano–Grandjean disclination defect lines were induced which remain even after removal of the laser beam.  相似文献   

12.
A cellulose derivative/liquid crystal composite‐type electro‐optical cell using a commercial cholesteric liquid crystal (CLC) was investigated. The electro‐optical properties of the system were examined, i.e. the dependence on applied voltage of the reflected wavelength and the minimum and maximum transmissions. A thin film of the CLC was dispersed with a cross‐linked cellulose film of 25 µm thickness. In the voltage dependence of the reflected wavelength it was verified that there is a hysteresis in the reflected wavelength. The variation of the reflected wavelength with temperature was also determined. The results are analysed in the framework of similar systems described in the literature for CLC dispersed in a polymer matrix.  相似文献   

13.
The electric field-induced dynamic phase-matching of second harmonic generation (SHG) waveguide was demonstrated by using a main chain polyarylamine. The linear and nonlinear optical properties of this polymer are presented. The optimum phase-matching thickness was controlled by applying an electric field to the polymer waveguide. The effective phase-matching thickness variation induced by poling is about 0.025 μm that is six times larger than full width at the half-maximum (FWHM) of phase-matching thickness in conventional slab waveguide. The efficient phase-matched SHG was observed from a taperless slab wave-guide. The optical loss of poled polymer on glass substrate at 632.8 nm was 2.7 dB/cm. © 1995 John Wiley & Sons, Inc.  相似文献   

14.
Recently, photonic band gap (PBG) crystals with lattice parameters comparable to the wavelength of light have attracted much attention, because they offer unique ways in which to control the propagation of light. PBG crystals have applications in laser, quantum optical devices, and so on. For many of these applications, it is important to have the capability of tuning the photonic band structures. The fabrication of such tunable PBG crystals is still a challenge. In this paper, we proposed that switchable PBG crystals could be realized by taking advantage of the phase transition in liquid crystals induced by the photoisomerization of azo dyes. A dynamic change in the optical stop band was demonstrated. Such photoswitchable PBG crystals provide a method by which light can be routed using light.  相似文献   

15.
A novel flexible free-standing films of polyvinyl alcohol (PVA)/silica polymer network dispersed cholesteric liquid crystals (CLC) have been prepared by the sol-gel process. In the hydrolysis of silicon alkoxides tetraethoxysilane (TEOS) processes, the silica having -OH with the -OH groups on PVA formed polymer networks with Si-O-C bonds by dehydration. The cholesteric liquid crystals were incorporated into the networks. The free-standing films were obtained by the spin-coating method. In order to improve the compatibility and microstructure of the cholesteric liquid crystals with PVA/silica polymer networks, the amphiphilic compound of hexadecyl trimethyl ammonium bromide (HDTMA) was introduced into the forming film solutions. Effects of the different ratios of raw materials on the structure of films were investigated. The microscopic morphology of free-standing films and the uniform dispersion of CLCs in the films have been characterized by polarizing optical microscopy (POM), the field emission scanning electron microscope (FESEM), Fourier transform infrared (FT-IR) spectrometer and atomic force microscope (AFM). The free-standing films exhibiting excellent CLC droplets dispersion, mechanical stability, and good flexibility could be useful for flexible displays, switchable optical elements and smart windows.  相似文献   

16.
We report about the synthesis and optical properties of a composite metal-insulator-semiconductor nanowire system which consists of a wet-chemically grown silver wire core surrounded by a SiO2 shell of controlled thickness, followed by an outer shell of highly luminescent CdSe nanocrystals. With microphotoluminescence (micro-PL) experiments, we studied the exciton-plasmon interaction in individual nanowires and analyzed the spatially resolved nanocrystal emission for different nanowire length, SiO2-shell thickness, nanocrystal shape, pump power, and emission polarization. For an SiO2 spacer thickness of approximately 15 nm, we observed an efficient excitation of surface plasmons by excitonic emission of CdSe nanocrystals. For nanowire lengths up to approximately 10 microm, the composite metal-insulator-semiconductor nanowires ((Ag)SiO2)CdSe act as a waveguide for 1D-surface plasmons at optical frequencies with efficient photon outcoupling at the nanowire tips, which is promising for efficient exciton-plasmon-photon conversion and surface plasmon guiding on a submicron scale in the visible spectral range.  相似文献   

17.
Poly(2,2’-disulfonyl-4,4’-benzidine terephthalamide) (PBDT), a kind of liquid-crystalline (LC) molecule, has high molecular weight, negative charge and a semi-rigid structure. The aqueous solution of PBDT shows nematic liquid crystalline state above a critical PBDT concentration, CLC*, of 2 wt%-3wt%. Different from the flexible polyelectrolyte, PBDT shows a variety of self-assembling structures in aqueous solution with and without salt due to the semi-rigid nature and highly charged property. In addition, the hydrogels with ordered structure are developed by polymerizing a cationic monomer N-[3-(N,N-dimethylamino) propyl] acrylamide methyl chloride quarternary (DMAPAA-Q) in the presence of a small amount of PBDT below the CLC*. During the polymerization of cationic monomer, the polycations form a complex with semi-rigid PBDT through electrostatic interaction; these complexes self-assemble into ordered structures that are frozen in the hydrogel. Several different structures, including the anisotropic, dual network-like structure, and cylindrically symmetric structure, with various length scales from micrometer to millimeter, are observed. The hydrogels with ordered liquid crystalline assemblies and particular optical properties should promise applications in many fields, such as in bionics, tissue engineering, and mechano-optical sensors.  相似文献   

18.
The optical absorption of one-dimensional photonic crystal based resonators containing different types of gold nanoparticles is controllably modified by means of the interplay between planar optical cavity modes and localized surface plasmons. Spin-casting of metal oxide nanoparticle suspensions was used to build multilayered photonic structures that host (silica-coated) gold nanorods and spheres. Strong reinforcement and depletion of the absorptance was observed at designed wavelength ranges, thus proving that our method provides a reliable means to modify the optical absorption originated at plasmonic resonances of particles of arbitrary shape and within a wide range of sizes. These observations are discussed on the basis of calculations of the spatial and spectral dependence of the optical field intensity within the multilayers.  相似文献   

19.
We investigated the effects of pretilt angle and anchoring energy on the formation of a uniformly lying helix (ULH) texture of cholesteric liquid crystals (CLCs). Pretilt angle was controlled by the thickness of a vertical alignment layer coated onto a planar alignment layer. In the given pretilt angle, the anchoring energy was enhanced by introducing reactive mesogen to the vertical alignment material. To characterise quantitatively the formation of the ULH texture we introduced reflectance, governed by areas of the ULH region and the planar-aligned CLC region. We found that the ULH texture was more widely formed under the condition of higher pretilt angle and weaker anchoring energy. Also, a more uniform alignment of the ULH texture was achieved with the higher pretilt angle even under the same anchoring energy condition.  相似文献   

20.
Optically active poly(4,4′-di(2-furyl)biphenyl) is successfully prepared by asymmetric electrochemical polymerization in a cholesteric liquid crystal (CLC) electrolyte. The polymer thus obtained forms a fingerprint optical texture similar to that of the CLC electrolyte and a convexo-concave surface structure along the fingerprint pattern. The polymer displays iridescence under irradiation with white light, and circular diffraction upon laser irradiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号