首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The gas permeability and n‐butane solubility in glassy poly(1‐trimethylgermyl‐1‐propyne) (PTMGP) are reported. As synthesized, the PTMGP product contains two fractions: (1) one that is insoluble in toluene and soluble only in carbon disulfide (the toluene‐insoluble polymer) and (2) one that is soluble in both toluene and carbon disulfide (the toluene‐soluble polymer). In as‐cast films, the gas permeability and n‐butane solubility are higher in films prepared from the toluene‐soluble polymer (particularly in those films cast from toluene) than in films prepared from the toluene‐insoluble polymer and increase to a maximum in both fractions after methanol conditioning. For example, in as‐cast films prepared from carbon disulfide, the oxygen permeability at 35 °C is 330 × 10?10 cm3 (STP) cm/(cm2 s cmHg) for the toluene‐soluble polymer and 73 × 10?10 cm3 (STP) cm/(cm2 s cmHg) for the toluene‐insoluble polymer. After these films are conditioned in methanol, the oxygen permeability increases to 5200 × 10?10 cm3 (STP) cm/(cm2 s cmHg) for the toluene‐soluble polymer and 6200 × 10?10 cm3 (STP) cm/(cm2 s cmHg) for the toluene‐insoluble polymer. The rankings of the fractional free volume and nonequilibrium excess free volume in the various PTMGP films are consistent with the measured gas permeability and n‐butane solubility values. Methanol conditioning increases gas permeability and n‐butane solubility of as‐cast PTMGP films, regardless of the polymer fraction type and casting solvent used, and minimizes the permeability and solubility differences between the various films (i.e., the permeability and solubility values of all conditioned PTMGP films are similar). © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2228–2236, 2002  相似文献   

2.
In current study, a real‐time rheological method was used to investigate the intercalation and exfoliation process of clay in high‐density polyethylene/organoclay (HDPE/OMMT) nanocomposites using maleic anhydride grafted polyethylene (PEgMA) as compatibilizer. To do this, a steady shear was applied to the original nonintercalated or slightly intercalated composites prepared via simple mixing. The moduli of the composites were recorded as a function of time. The effect of matrix molecular weight and the content of compatibilizer on the modulus were studied. The role of the compatibilizer is to enhance the interaction between OMMT and polymer matrix, which facilitates the dispersion, intercalation, and exfoliation of OMMT. The matrix molecular weight determines the melt viscosity and affects the shear stress applied to OMMT platelets. Based on the experimental results, different exfoliation processes of OMMT in composites with different matrix molecular weight were demonstrated. The slippage of OMMT layers is suggested in low‐molecular weight matrix, whereas a gradual intercalation process under shear is suggested in high‐molecular weight matrix. Current study demonstrates that real‐time rheological measurement is an effective way to investigate the dispersion, intercalation, and exfoliation of OMMT as well as the structural change of the matrix. Moreover, it also provides a deep understanding for the role of polymer matrix and compatibilizer in the clay intercalation process. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 302–312, 2010  相似文献   

3.
The two‐dimensional carbon material graphdiyne (GDY) holds great promise as a semiconductor and porous material, however, exfoliation of bulk GDY into single‐ or few‐layered GDY in the aqueous phase remains a challenge. We report an efficient method for the damage‐free exfoliation of bulk GDY into single‐ or few‐layered GDY with high yield in an aqueous solution of inorganic salts (e.g., Li2SiF6). This was confirmed by spherical‐aberration‐corrected scanning transmission electron microscopy, scanning/transmission electron microscopy, atomic force microscopy, Fourier transform infrared/Raman spectroscopy, X‐ray photoelectron spectroscopy. The method gives high exfoliation efficiency (75 wt %) without creating additional structural defects or oxides in the exfoliated GDY. Theoretical calculations suggest that non‐covalent adsorption of the anion, diffusion of the cation, and subsequent repulsive forces between adjacent flakes are the main driving force for the efficient exfoliation.  相似文献   

4.
Summary: Organophilized montmorillonite‐epoxy and ‐polyurethane nanocomposites, useful for packaging applications, were prepared and their oxygen permeability was measured. The composite morphology was mixed, exfoliated and intercalated, as shown by wide‐angle X‐ray diffraction (WAXRD) and transmission electron microscopy (TEM). The gas‐barrier performance of the polyurethane composites was better than that of the epoxy composites due to more exfoliation. The average aspect ratio of the montmorillonite platelets in the nanocomposites could be estimated from the reduction in permeability by a numerical finite element approach.

A computer model comprising 50 randomly distributed and oriented round platelets with an aspect ratio of 50 at 3 vol.‐% loading, periodic boundary conditions applied.  相似文献   


5.
The effects of film thickness, physical aging, and methanol conditioning on the solubility and transport properties of glassy poly[1‐phenyl‐2‐[p‐(triisopropylsilyl) phenyl]acetylene] are reported at 35 °C. In general, the gas permeability coefficients are very high, and this polymer is more permeable to larger hydrocarbons (e.g., C3H8 and C4H10) than to light gases such as H2. The gas permeability and solubility coefficients are higher in as‐cast, unaged films than in as‐cast films aged at ambient conditions and increase to a maximum in both unaged and aged as‐cast films after methanol conditioning. For example, the oxygen permeability of a 20‐μm‐thick as‐cast film is initially 100 barrer and decreases to 40 barrer after aging for 1 week at ambient conditions. After methanol treatment, the oxygen permeabilities of unaged and aged films increase to 430 and 460 barrer, respectively. Thicker as‐cast films have higher gas permeabilities than thinner as‐cast films. Propane and n‐butane sorption isotherms suggest significant changes in the nonequilibrium excess free volume in these glassy polymer films due to processing history. For example, the nonequilibrium excess free volume estimated from the sorption data is similar for as‐cast, unaged samples and methanol‐conditioned samples; it is 100% higher in methanol‐conditioned films than in aged, as‐cast films. The sensitivity of permeability to processing history may be due in large measure to the influence of processing history on nonequilibrium excess free volume and free volume distribution. The propane and n‐butane diffusion coefficients are also sensitive to film processing history, presumably because of the dependence of diffusivity on free volume and free volume distribution. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1474–1484, 2000  相似文献   

6.
The polymerization of 1,2‐disubstituted acetylenes [1‐(trimethylgermyl)‐1‐propyne and 1‐(trimethylsilyl)‐1‐propyne] initiated by Nb‐ and Ta‐based catalytic systems was studied within a wide temperature range (?10 to +80 °C) with solvents (cyclohexane, CCl4, toluene, anisol, and n‐chlorobutane) with variable dielectric constants (2.023–7.390). Conditions ensuring the synthesis of poly[1‐(trimethylsilyl)‐1‐propyne] (PTMSP) containing 20–80% cis units and poly[1‐(trimethylgermyl)‐1‐propyne] (PTMGP) containing 3–65% cis units were determined. The PTMSP and PTMGP samples were amorphous, exhibited a two‐phase structure characterized by the presence of less ordered regions and regions with an enhanced level of ordering, and differed in solubility. A correlation was found between the cis/trans ratio and the morphology, the geometrical density of PTMSP and PTMGP films, and the gas permeability of the polymers. The gas permeability and solubility behavior of PTMSP and PTMGP were examined in terms of the molecular characteristics of the polymer samples (the thermodynamic Kuhn segment and the Kerr electrooptic effect). It was demonstrated that the gas permeability, as well as the solubility of the polymers, was defined by their supramolecular ordering, which depended on the lengths of continuous sequences composed of units of analogous microstructures and on the flexibility of macrochains. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2133–2155, 2003  相似文献   

7.
《先进技术聚合物》2018,29(1):130-142
The possibility of developing low‐cost commercial grafted and sulfonated Poly(vinylidene fluoride) (PVDF‐g‐PSSA) membranes as proton exchange membranes for fuel cell applications have been investigated. PVDF‐g‐PSSA membranes were systematically prepared and examined with the focus of understanding how the polymer microstructure (degree of grafting and sulfonation, ion‐exchange capacity, etc) affects their methanol permeability, water uptake, and proton conductivity. Fourier transform infrared spectroscopy was used to characterize the changes of the membrane's microstructure after grafting and sulfonation. The results showed that the PVDF‐g‐PSSA membranes exhibited good thermal stability and lower methanol permeability. The proton conductivity of PVDF‐g‐PSSA membranes was also measured by the electrochemical impedance spectroscopy method. It was found that the proton conductivity of PVDF‐g‐PSSA membranes depends on the degree of sulfonation. All the sulfonated membranes show high proton conductivity at 92°C, in the range of 27 to 235 mScm−1, which is much higher than that of Nafion212 (102 mScm−1 at 80°C). The results indicated that the PVDF‐g‐PSSA membranes are particularly promising membranes to be used as polymer electrolyte membranes due to their excellent stability, low methanol permeability, and high proton conductivity.  相似文献   

8.
We report a novel crystalline supramolecular polybenzobisimidazole (SP‐PBBI) capable of providing a two‐dimensional polymer (2DSP‐PBBI) by liquid‐phase exfoliation. A regular arrangement of rigid rod‐like polybenzobisimidazole (PBBI) chains is achieved by interchain hydrogen bonding. Titration of 2DSP‐PBBI with cobalt chloride (CoCl2) using UV‐Vis spectroscopy demonstrates the presence of bidentate NO ligands on the PBBI backbone and NO–Co(II) complexation. Imaging analysis using atomic force microscopy (AFM) reveals the planar surface morphology of exfoliated 2DSP‐PBBI sheets with lateral dimensions of <1 μm and thickness of <30 nm. The size of the polymer crystal growth is tuned by employing condensation/precipitation polymerization under nonisothermal conditions. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 1095–1101  相似文献   

9.
《先进技术聚合物》2018,29(2):874-883
The concept of mixed matrix membrane comprising dispersed inorganic fillers into a polymer media has revealed appealing to tune the gas separation performance. In this work, the membranes were prepared by incorporation of mesoporous silica into polyurethane (PU). Mesoporous silica particles with different pore size and structures, MCM‐41, cubic MCM‐48 and SBA‐16, were synthesized by templating method and functionalized with 3‐aminopropyltriethoxysilane (APTES). High porosity and aminated surface of the mesoporous silica enhance the adhesion of the particles to the PU matrix. The SEM and FTIR results showed strong interactions between the particles and the PU chains. Moreover, the thermal stability of the hybrid PUs improved compared to the pure polymer. Gas transport properties of the membranes were measured for pure CO2, CH4, O2, and N2 gases at 10 bar and 25°C. The results showed that the gas permeabilities enhanced with increasing in the loading of modified mesoporous silica particles. High porosity and amine‐functionalized particles render opportunities to enhance the gas diffusivity and solubility through the membranes. The enhanced gas transport properties of the mixed matrix membranes reveal the advantages of mesoporous silica to improve the gas permeability (CO2 permeability up to ~70) without scarifying the gas selectivity (α(CO2/N2)~ 30 for 5 wt% SBA‐16 content).  相似文献   

10.
Herein the stereoselective two‐step synthesis of pure exo‐5‐trimethylsilylnorbornene is reported. The monomer proved to be highly reactive in both metathesis and addition polymerization. ROMP polymerization was catalyzed by the first‐generation Grubbs catalyst. High‐molecular‐weight saturated addition polymers were prepared using nickel or palladium complexes as precatalysts and Na+[B(3,5‐(CF3)2C6H3)4] and/or MAO as cocatalysts. The obtained addition polynorbornenes are highly gas permeable and microporous materials possessing large free volume and BET surface area (up to 540 m2/g). The influence of the substituent orientation (exo‐ vs. exo‐/endo‐mixture) on polymer properties was established. The metathesis polymer based on exo‐isomer exhibits 1.5‐ to 2‐fold increase of permeability coefficients for all gases in comparison to the similar polymer based on the mixture of exo‐ and endo‐isomers. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1234–1248  相似文献   

11.
The effect of physical aging on the gas permeability, fractional free volume (FFV), and positron annihilation lifetime spectroscopy (PALS) parameters of dense, isotropic poly(1‐trimethylsilyl‐1‐propyne) (PTMSP) films synthesized with TaCl5 and NbCl5 was characterized. As‐cast films were soaked in methanol until an equilibrium amount of methanol was absorbed by the polymer. When the films were removed from methanol, film thickness initially decreased rapidly and was almost constant after 70 h in air for both catalysts. This timescale was much longer than the timescale for complete methanol desorption (ca. 5 h). From the film‐thickness data, the reduction in FFV with time was estimated. For samples prepared with either catalyst, the kinetics of FFV reduction were well‐described by a simple model based on the notion either that free‐volume elements diffuse to the surface of the polymer film and are subsequently eliminated from the sample or that lattice contraction controls polymer densification. Methane permeability decreased rapidly during the first 70 h, which was the same timescale for the thickness change. The decrease in methane permeability was smaller in films prepared with NbCl5 than with TaCl5. The logarithm of methane permeability decreased linearly as reciprocal FFV increased, in accordance with free‐volume theory. The PALS results indicate that the concentration of larger free‐volume elements (as indicated by the intensity I4) decreased with aging time and that the other PALS parameters were not strongly influenced by aging. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1222–1239, 2000  相似文献   

12.
High‐density polyethylene (HDPE) and nanosilica nanocomposites were prepared for SiO2 content up to 15 wt%. Microstructural characterization evidenced a homogenous distribution of silica aggregates with a mean size increasing with the filler content finally resulting in a rheological percolation between 7.5 and 10 wt%. Nanoparticles did not induce any significant impact on the matrix crystallinity but led to a real improvement on elastic properties accompanied with a large embrittlement above the percolation threshold. The effect of annealing near HDPE melting temperature was studied. Differential scanning calorimetry, X‐ray diffraction, and small‐angle X‐ray scattering analyses showed a significant change in the HDPE microstructure after annealing at 125°C. A large increase in the crystallinity (from 68 to 76%) and a clear improvement of Young's modulus (by 55%) were observed prior to polymer degradation. A valuable impact of silica particles on thermal stability was also obvious regarding the evolution of elastic properties for extended exposure times (850–1,200 h). © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 535–546  相似文献   

13.
For the first time the possibility to obtain nanostructures by self‐assembly of chitosan polyampholytic derivative was demonstrated. The self‐assembly of N‐carboxyethylchitosan (CECh) took place only near its isoelectric point (pH 5.0–5.6). Out of the pH range 5.0–5.6, CECh aqueous solutions behaved as real solutions. Dynamic light scattering and atomic force microscopy analyses revealed that spherically shaped or rod/worm‐like nanosized assemblies were formed depending on the polymer molar mass, pH value, and polymer concentration. CECh of two different molar masses was studied in concentrations ranging from 0.01 to 0.1 mg/mL. The structures from CECh of weight‐average molar mass (Mw ) 4.5 × 103 g/mol were spherical regardless the pH and polymer concentration. In contrast, CECh of high molar mass (HMMCECh, Mw = 6.7 × 105 g/mol) formed self‐assemblies with spherical shape only at pH 5.0 and 5.6. At pH 5.2 spherical nanoparticles were obtained only at polymer concentration 0.01 mg/mL. The mean hydrodynamic diameter (Dh) of the obtained nanoparticles was in the range from 30 to 980 nm. On increasing the concentration, aggregation of the nanoparticles appeared, and at HMMCECh concentration 0.1 mg/mL, rod/worm‐like structures were obtained. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6712–6721, 2008  相似文献   

14.
The sorption of compressed carbon dioxide and methane in a series of all‐aromatic poly(etherimide) (PEI) thin films is presented. The polymer films are derived from the reactions between an arylether diamine (P1) and four different dianhydrides [3,3′,4,4′‐oxydiphthalic dianhydride (ODPA), 3,3′,4,4′ biphenyltetra‐carboxylic dianhydride (BPDA), 3,3′,4,4′‐benzo‐phenonetetracarboxylic dianhydride (BTDA), and pyromellitic dianhydride (PMDA)] that have been selected to systematically change the flexibility of the polymer backbone, the segmental mobility, and the nonequilibrium excess free volume (EFV) of the polymer. The EFV, gas sorption capacities, and sorption‐ and temperature‐induced dynamic changes in film thickness and refractive index have been investigated by spectroscopic ellipsometry. The sorption capacity depends to a great extent on the PEI backbone composition. PMDA‐P1 shows the highest carbon dioxide sorption, combined with the lowest sorption selectivity because of the predominant sorption of methane in the EFV. For ODPA‐P1, the highest sorption selectivity is obtained, while it shows little long‐term relaxations at carbon dioxide pressures up to 25 bar. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 986–993  相似文献   

15.
Both the separation behavior and the structure of a polymer monolith column depends on both the reaction solution composition and the polymerization conditions. In photoinitiated low‐temperature polymerization, polymerization temperature, irradiation intensity, and polymerization time were key factors to control the monolith characteristics. In this study, the effect of polymerization time on the chromatographic, material, and chemical characteristics of poly(butyl methacrylate‐co‐ethylene dimethacrylate) monoliths was studied using pyrolysis‐gas chromatography, Raman spectroscopy, inverse size exclusion chromatography, scanning electron microscopy, and chromatographic methods. Both butyl methacrylate and ethylene dimethacrylate monomers were incorporated into the monolith as the polymerization time increased, and it resulted in increases in both the flow resistance (decrease in both permeability and total/through pore porosities) and retention factors. The longer polymerization time led to lower relative amounts of free methacrylate functional groups in the monolith, i.e. cross‐linking was enhanced. The increase of the polymerization time from 8 to 12 min significantly reduced the separation efficiency for the retained analyte, whereas an increase in the fraction of the mesoporosity was observed.  相似文献   

16.
Blends of high‐density polyethylene (HDPE) and polyamide‐6 (PA6) were produced by ultrasonic extrusion. Ultrasonic irradiation leads to degradation of polymers and in situ compatibilization of blends as confirmed by variations in linear viscoelastic properties. The results showed that the effect of ultrasonic irradiation on dynamic rheological properties depends on the composition and experimental temperature. At the same time, the relationship between storage modulus and loss modulus indicated the effect of ultrasonic irradiation on compatibility of HDPE/PA6 blends. Based on an emulsion model, the interfacial tension between the matrix and the dispersed phase was predicted. The data obtained showed that ultrasonic irradiation can decrease the interfacial tension and then enhance the compatibility of HDPE/PA6 blends. This finding was consistent with our previous work. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1260–1269, 2005  相似文献   

17.
In order to improve the performance of inorganic/organic composites, aluminum trihydroxide (ATH) core composites with a styrene‐ethylene‐butadiene‐styrene block copolymer grafted with maleic anhydride (MAH‐g‐SEBS) shell phase, and P‐N flame retardant as a synergistic agent, were prepared through an interface design. The effects of polyethylene glycol (PEG) content on the interfacial interaction, flame retardancy, thermal properties, and mechanical properties of high‐density polyethylene (HDPE)/ATH composites were investigated by small angle X‐ray diffraction, rotational rheometer, limiting oxygen index, thermogravimetric analysis (TGA), and tensile testing. The ATH synergistic effects of P‐N flame‐retardant improved the combustion performance of HDPE/ATH/PEG(3%)/MAH‐g‐SEBS/P‐N (abbreviated as HDPE/MH3/M‐g‐S/P‐N) composite by forming more carbon layer, increased the elongation at break from 21% to 558% compared to HDPE/ATH, and increased the interface thickness from 0.447 to 0.891 nm. SEM results support the compatibility of ATH with HDPE increased and the interfacial effect was enhanced. TGA showed the maximum decomposition temperature of the two stages and the yield of the residue at high temperature increased first and then decreased with the increase of PEG content. Rheological behavior showed the storage modulus, complex viscosity, and the relaxation time initially increased and then decreased with the increase of PEG content indicating PEG, M‐g‐S, and ATH powder gradually formed a partial coating, then a full coating, and finally an over‐coated core‐shell structured model.  相似文献   

18.
Amphiphilic block‐graft copolymers mPEG‐b‐P(DTC‐ADTC‐g‐Pal) were synthesized by ring‐opening polymerization of 2,2‐dimethyltrimethylene carbonate (DTC) and 2,2‐bis(azidomethyl)trimethylene carbonate (ADTC) with poly(ethylene glycol) monomethyl ether (mPEG) as an initiator, followed by the click reaction of propargyl palmitate and the pendant azido groups on the polymer chains. Stable micelle solutions of the amphiphilic block‐graft copolymers could be prepared by adding water to a THF solution of the polymer followed by the removal of the organic solvent by dialysis. Dynamic light scattering measurements showed that the micelles had a narrow size distribution. Transmission electron microscopy images displayed that the micelles were in spherical shape. The grafted structure could enhance the interaction of polymer chains with drug molecules and improve the drug‐loading capacity and entrapment efficiency. Further, the amphiphilic block‐graft copolymers mPEG‐b‐P(DTC‐ADTC‐g‐Pal) were low cytotoxic and had more sustained drug release behavior. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

19.
Mixed‐matrix membranes (MMMs) of Matrimid® and polyaniline/clay (PC) are investigated for CO2/CH4 separation and CO2‐induced plasticization. PC particles are synthesized through in‐situ polymerization of aniline in the presence of organophilic clay and then incorporated into Matrimid by solution casting method. Chemical structure and morphology of PC powder and fabricated membranes are analyzed by Fourier transform infrared (FTIR), X‐ray diffraction (XRD), differential scanning calorimetry/thermogravimetric analysis (DSC/TGA) and scanning electron microscopy (SEM). The XRD spectra of PC particles show the exfoliation of silicate layers throughout the polyaniline (PAni) matrix, and SEM images indicate flower‐petal morphology for PC particles. The permeability values of CO2 and CH4 increase 30–35% by incorporation of 10 wt% PC without any significant drop in selectivity. PC particles with flower‐petal morphology plays an important role in increasing the gas permeability values of both gases while Matrimid is the only phase that controls CO2/CH4 selectivity. The plasticization pressure was increased to 30 bar by incorporation of 10 wt% PC in the Matrimid matrix. CO2 permeability and pplast improved 35% and 200%, respectively, resulting in 300% enhancement in the capacity of MMM in the purification of natural gas with a selectivity of about 40. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
The improvement of oxygen‐barrier properties of glassy polyesters by orientation was examined. Poly(ethylene terephthalate) (PET), poly(ethylene naphthalate), and a copolymer based on PET in which 55 mol % of the terephthalate was replaced with bibenzoate (PET‐BB55) were oriented by constrained uniaxial stretching. In a fairly narrow window of stretching conditions near the glass‐transition temperature, it was possible to achieve uniform extension of the polyesters without crystallization or stress whitening. The processes of orientation and densification correlated with the conformational transformation of glycol linkages from gauche to trans. Oxygen permeability, diffusivity, and solubility decreased with the amount of orientation. A linear relationship between the oxygen solubility and polymer specific volume suggested that the cold‐drawn polyester could be regarded as a one‐phase densified glass. This allowed an analysis of oxygen solubility in accordance with free‐volume concepts of gas permeability in glassy polymers. Orientation was seen as the process of decreasing the amount of excess‐hole free volume and bringing the nonequilibrium polymer glass closer to the equilibrium (zero‐solubility) condition. Cold drawing most effectively reduced the free volume of PET‐BB55. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 862–877, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号