首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We report a new method for the synthesis of block copolymers with a pentasilane core by the polymerization of alkyl methacrylate monomers using the pentasilyl dianion as an initiator. The polymerization proceeded with living features and yielded the corresponding block copolymers with controlled molecular weights. The amphiphilic block copolymer was obtained by the polymer reaction, and it formed sphere‐like aggregates in MeOH/H2O solution.

  相似文献   


2.
We report the preparation of novel fluorinated block copolymers using a two-step modification sequence. We first prepared model polyisoprene-poly-tert-butylmethacrylate block copolymers by anionic polymerization. Exposing these materials to difluorocarbene (generated by the thermolysis of hexafluoropropylene oxide) resulted in modification of the polyisoprene block to the corresponding difluorocyclopropane repeating unit without compromising the integrity of the poly-tert-butylmethacrylate block. Hydrolysis of the difluorocarbene-modified materials gave the corresponding difluorocarbene-modified polyisoprene-polymethacrylic acid diblock copolymers. These amphiphilic materials are expected to exhibit interesting self-assembly behavior in aqueous solution.  相似文献   

3.
Living anionic polymerization of tert‐butyl acrylate initiated by 1,1‐diphenylhexyllithium is conducted in a flow microreactor system in the presence of lithium chloride. A high degree of control over the molecular weight distribution is achieved under easily accessible conditions, for example at ?20 °C. The subsequent reaction of a reactive polymer chain end with an alkyl methacrylate in an integrated flow micoreactor system leads to the formation of a block copolymer with a narrow molecular weight distribution.

  相似文献   


4.
Synthetic potential of the ligated anionic polymerization (LAP) of acrylic and metacrylic esters initiated with methyl 2-lithioisobutyrate (MIB-Li) in the presence of an excess of alkali metal tert-alkoxides (prevailingly Li tert-butoxide) is presented. tert-Alkoxides form with ester-enolates, like MIB-Li, cross-aggregates of various composition, which tailor the environment of growing chain-ends, lower their nucleophilicity and restrict in this way the extent of side reactions, in particular self-termination of growing macroanions by back-biting reaction. Thus, stability of polymethacrylate living chains is sufficiently high for methacrylate and acrylate block copolymers to be synthesized. In the case of acrylate polymerization, reaction conditions must be optimized due to their high tendency to self-termination.  相似文献   

5.
采用原子转移自由基聚合(ATRP)法制得了端基分别为烯丙基和溴原子的聚二甲基丙烯酰胺(PDMAAm),经叠氮基亲核取代后与端炔基聚二甲基硅氧烷进行点击反应,得到两亲三嵌段聚合物。利用^1HNMR、FTIR、GPC等测试方法对聚合物的结构进行了表征。结果表明:采用ATRP法合成的PDMAAm均聚物分子量分布较窄,通过点击化学法将热力学不相容的亲水性PDMAAm链段及疏水性聚二甲基硅氧烷(PDMS)链段制备PDMAAmPDMS—PDMAAm嵌段聚合物,是一种高效易行的方法。  相似文献   

6.
Liquid crystalline block copolymers (LCBCPs) are promising for developing functional materials owing to an assembly of better functionalities. Taking advantage of differences in reactivity between alkynyl and vinyl over temperature during hydrosilylation, a series of LCBCPs with modular functionalization of the block copolymers (BCPs) are reported by independently and site-selectively attaching azobenzene moieties containing alkynyl (LC1) and Si-H (LC2) terminals into well-designed poly(styrene)-block-polybutadienes (PS-b-PBs) and poly(4-vinylphenyldimethylsilane)-block-polybutadienes (PVPDMS-b-PBs) produced from living anionic polymerization (LAP). By the principle of modular functionalization, it is demonstrated that mono-functionalized (PVPDMS-g-LC1)-b-PB and PS-b-(PB-g-LC2) not only maintain independence but also have cooperative contributions to bi-functionalized (PVPDMS-g-LC1)-b-(PB-g-LC2) in terms of mesomorphic performances and microphase separation, which is evident from differential scanning calorimetry (DSC) and polarized optical morphologies (POM) and identified by powder X-ray diffractions. With the application of the new principle of modular functionalization, local-crosslinked liquid crystalline networks (LCNs) with controlled functionality are successfully synthesized, which show well-controlled phase behaviors over molecular compositions.  相似文献   

7.
Post-polymerization modification provides an elegant way to introduce chemical functionalities onto macromolecules to produce tailor-made materials with superior properties. This concept was adapted to well-defined block copolymers of the poly(2-oxazoline) family and demonstrated the large potential of these macromolecules as universal toolkit for numerous applications. Triblock copolymers with separated water-soluble, alkyne- and alkene-containing segments were synthesized and orthogonally modified with various low-molecular weight functional molecules by copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) and thiol-ene (TE) click reactions, respectively. Representative toolkit polymers were used for the synthesis of gold, iron oxide and silica nanoparticles.  相似文献   

8.
Cell‐based therapies are gaining prominence in treating a wide variety of diseases and using synthetic polymers to manipulate these cells provides an opportunity to impart function that could not be achieved using solely genetic means. Herein, we describe the utility of functional block copolymers synthesized by ring‐opening metathesis polymerization (ROMP) that can insert directly into the cell membrane via the incorporation of long alkyl chains into a short polymer block leading to non‐covalent, hydrophobic interactions with the lipid bilayer. Furthermore, we demonstrate that these polymers can be imbued with advanced functionalities. A photosensitizer was incorporated into these polymers to enable spatially controlled cell death by the localized generation of 1O2 at the cell surface in response to red‐light irradiation. In a broader context, we believe our polymer insertion strategy could be used as a general methodology to impart functionality onto cell‐surfaces.  相似文献   

9.

A functionalized compound, 4‐(2‐bromoisobutyryl)‐2,2,6,6‐tetra‐methylpiperidine‐1‐oxyl (Br‐TEMPO), was synthesized and used to synthesize block copolymers through tandem nitroxide‐mediated radical polymerization (NMRP) and atom transfer radical polymerization (ATRP). First, Br‐TEMPO was used to mediate the polymerization of styrene. The kinetics of polymerization proved a typical “living” nature of the reaction and the effectiveness in the mediation of polymerization of Br‐TEMPO. Then the PS‐Br macroinitiator was used to initiate atom transfer radical polymerization (ATRP). A series of acrylates were initiated by PS‐Br macroinitiators in typical ATRP processes at various conditions. The controlled polymerization of ATRP was also confirmed by molecular weight and kinetic analysis. Several cleavable block copolymers of PS‐b‐P(t‐BA), PS‐b‐P(n‐BA), and PS‐b‐PMA, with different molecular weights, were synthesized via this strategy. Relatively low polydispersities (<1.5) were observed and the molecular weights were in agreement with the theoretical ones. Hydrolysis of PS‐b‐P(t‐BA) was carried out, giving amphiphilic block copolymer PS‐b‐PAA without the cleavage of C‐ON bond or ester bond. All the block copolymers have two Tgs as demonstrated by DSC. A typical cleavable block copolymer of PS‐b‐PMA was cleaved by adding phenylhydrazine at 120°C to produce homopolymers in situ.  相似文献   

10.
Suprapolymers : The synthesis of symmetrically end‐functionalized polymers in a single step has been developed by means of ring‐opening metathesis polymerization by using a bimetallic ruthenium initiator and functional chain terminators. Self‐assembly of the resulting polymers allows for the formation of supramolecular alternating block copolymers (see figure).

  相似文献   


11.
Summary: This article deals with recent progress including the authors' work concerning the application of block copolymers as polymeric surfactants in heterophase polymerizations. The synthesis methods for preparing block copolymers by emulsion and dispersion techniques are outlined, with emphasis on recently developed controlled free radical polymerizations in aqueous media. Specific characteristics of amphiphilic block copolymers are described, for example, micellization and emulsifying effects. A general overview of emulsion and dispersion polymerization in an aqueous and organic medium with ionic and nonionic block copolymers is presented for the preparation of electrosteric and sterically stabilized latex particles. Typical examples of microemulsion, miniemulsion, oil‐in‐oil emulsion, and micellar polymerizations are provided. Current and potential developments of so‐called “hairy latexes”, inverse‐, multiple‐, and solid emulsions, as well as of nonaqueous polymeric dispersions are also discussed.

PS foam obtained by free radical polymerization of water‐in‐styrene, stabilized with a PS–PEO diblock copolymer.  相似文献   


12.
Summary : The paper provides experimental results about an easy and versatile method to produce amphiphilic block copolymers, block copolymer particles, and even inorganic – polymeric nano-composites via aqueous heterophase polymerization. Special emphasis is placed on the morphology and colloidal properties of some non-ionic di- and triblock copolymer particles with poly(ethylene glycol) of 106 g/mol molecular weight as hydrophilic block as well as di-stimuli-responsive block copolymers containing both a poly(N-isopropyl acrylamide) and a poly(ionic liquid) block.  相似文献   

13.
Incorporating peptide blocks into block copolymers opens up new realms of bioactive or smart materials. Because there are such a variety of peptides, polymers, and hybrid architectures that can be imagined, there are many different routes available for the synthesis of these chimera molecules. This review summarizes the contemporary strategies in combining synthesis techniques to create well‐defined peptide‐polymer hybrids that retain the vital aspects of each disparate block. Living polymerization can be united with the molecular‐level control afforded by peptide blocks to yield block copolymers that not only have precisely defined primary structures, but that also interact with other (bio)molecules in a well defined manner.

  相似文献   


14.
We present a combinatorial approach to the synthesis of block copolymer series by anionic polymerization, utilizing a specially designed reactor setup. The setup features one main reactor and three secondary reactors to carry out anionic polymerizations on laboratory‐scale quantities at low temperatures. The implementation was demonstrated with three series of AB‐ and ABC‐block copolymers with identical A‐ and AB‐blocks, respectively. The B‐block in AB‐diblock copolymers and the C‐block in ABC‐triblock copolymers can be varied with respect to block length or chemical constitution. Well‐defined series of block copolymers are useful for advanced optimization of functional block copolymers in nanotechnology applications.

  相似文献   


15.
Mixed-graft block copolymers (mGBCPs) consist of two or more types of polymeric side chains grafted on a linear backbone in a random, alternating, or pseudo-alternating sequence. They can phase-separate with the backbone serving as the interface of the blocks, and the side chains dominate their self-assembly behavior. mGBCPs are an accessible polymer architecture for exploring the idea of encoding polymer properties through the macromolecular architecture, as there are two distinct structural components that can be tuned: the backbone and the side chains. In this Concept article, the current literature on the synthesis of mGBCPs is reviewed, and the advantages and disadvantages of each synthetic method are noted. The self-assembly of mGBCPs is also discussed where possible. Finally, directions for future research on mGBCP synthesis and self-assembly are suggested.  相似文献   

16.
Linear polystyrene-block-poly(Z-L-lysine) copolymers with a very narrow molecular weight distribution (polydispersity index < 1.03) could be obtained via the ring-opening polymerization of Z-L-lysine-N-carboxyanhydride using ω-(primary amino hydrochloride)-polystyrenes as macroinitiators in N,N-dimethylformamide as the solvent at 40-80 °C. The block copolymer samples were analyzed by means of NMR, size exclusion chromatography, and analytical ultracentrifugation.  相似文献   

17.
Abstract

Using UV light as the energy source and polystyrene- (PS-) or polymethyl methacrylate- (PMMA-) macroinitiators with active aromatic or aliphatic thiyl end groups, PS-PMMA and PMMA-PEA (poly-ethyl acrylate) block copolymers were synthesized. The molecular weights of both block copolymers increased with increasing reaction time. The reactivity of macroinitiators depended on the type of thiyl groups and monomer and not on the length of the polymer chain. The most reactive were macroinitiators containing resonance stabilized non-substituted or substituted aromatic end groups. The decomposition of the macroinitiators took place over the formation of the thiyl radical and macroradical. The bond length, the bond dissociation energy, and the bond order of macroradical end groups were calculated. The most reactive monomer was ethyl acrylate; the less reactive was styrene. The structure, the molecular weight, and the T g of the styrene-acrylate block copolymers were determined. The PMMA/PEA block copolymer had two of block's T g s, the first at 105°C, the second at ?24°C, and a third at 16°C which probably represents contacting segments.  相似文献   

18.
Summary: Well‐defined pentablock copolymers of styrene–[1]dimethylsilaferrocenophane–methyl methacrylate (PMMA‐b‐PFS‐b‐PS‐b‐PFS‐b‐PMMA) are synthesized using lithium naphthalide as initiator and a 1,1‐dimethylsilacyclobutane‐mediated 1,1‐diphenylethylene (DPE) end‐capping technique. Annealing under various conditions followed by analysis by transmission electron microscopy revealed good phase separation by the copolymers and the presence of ordered microstructures, such as spheres‐on/in‐spheres, and spheres‐on/in‐lamellae micromorphologies.

Structure of the styrene–[1]dimethylsilaferrocenophane–methyl methacrylate pentablock copolymers.  相似文献   


19.
A double-headed initiator was synthesized yielding two functional groups for the initiation of the nickel mediated ring-opening polymerization of γ-benzyl-L -glutamate-N-carboxyanhydride and controlled radical polymerization of vinyl monomers via ATRP or NMP. Well-defined block copolymers combining polypeptides and synthetic polymers were obtained.  相似文献   

20.
The synthesis of well‐defined poly(methyl methacrylate)‐block‐poly(ethylene oxide) (PMMA‐b‐PEO) dibock copolymer through anionic polymerization using monohydroxy telechelic PMMA as macroinitiator is described. Living anionic polymerization of methyl methacrylate was performed using initiators derived from the adduct of diphenylethylene and a suitable alkyllithium, either of which contains a hydroxyl group protected with tert‐butyldimethylsilyl moiety in tetrahydrofuran (THF) at ?78 °C in the presence of LiClO4. The synthesized telechelic PMMAs had good control of molecular weight with narrow molecular weight distribution (MWD). The 1H NMR and MALDI‐TOF MS analysis confirmed quantitative functionalization of chain‐ends. Block copolymerization of ethylene oxide was carried out using the terminal hydroxyl group of PMMA as initiator in the presence of potassium counter ion in THF at 35 °C. The PMMA‐b‐PEO diblock copolymers had moderate control of molecular weight with narrow MWD. The 1H NMR results confirm the absence of trans‐esterification reaction of propagating PEO anions onto the ester pendants of PMMA. The micellation behavior of PMMA‐b‐PEO diblock copolymer was examined in water using 1H NMR and dynamic light scattering. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2132–2144, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号