首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《先进技术聚合物》2018,29(2):806-813
Surface‐initiated atom transfer radical polymerization (SI‐ATRP) was used to graft poly(N‐isopropylacrylamide) (PNIPAM) brush layers with a controllable thickness in the 10‐nm range from silicon substrates. The rate of polymerization of N‐isopropylacrylamide was tuned by the [Cu(II)]0/[Cu(I)]0 ratio between the deactivating and activating species. The polymer layer thickness was characterized by atomic force microscopy (AFM) and ellipsometry. PNIPAM layers with a dry thickness between 5.5 and 16 nm were obtained. Time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) confirmed that the chemical structure is PNIPAM brushes. Analysis of the AFM data showed that our procedure leads to polymer grafts in the “mushroom‐to‐brush” transition regime.  相似文献   

2.
A series of superhydrophobic poly(methacryloxypropyltrimethoxysilane, MPTS‐b‐2,‐2,3,3,4,4,4‐heptafluorobutyl methacrylate, HFBMA)‐grafted silica hybrid nanoparticles (SiO2/PMPTS‐b‐PHFBMA) were prepared by two‐step surface‐initiated atom transfer radical polymerization (SI‐ATRP). Under the adopted polymerization conditions in our previous work, the superhydrophobic property was found to depend on the SI‐ATRP conditions of HFBMA. As a series of work, in this present study, the effects of polymerization conditions, such as the initiator concentration, the molar ratio of monomer and initiator, and the polymerization temperature on the SI‐ATRP kinetics and the interrelation between the kinetics and the surface properties of the nanoparticles were investigated. The results showed that the SI‐ATRP of HFBMA was well controlled. The results also showed that both the surface microphase separation and roughness of the hybrid nanoparticles could be strengthened with the increase of the molecular weight of polymer‐grafted silica hybrid nanoparticles. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

3.
A well‐defined amphiphilic copolymer brush with poly(ethylene oxide) as the main chain and polystyrene as the side chain was successfully prepared by a combination of anionic polymerization and atom transfer radical polymerization (ATRP). The glycidol was first protected by ethyl vinyl ether to form 2,3‐epoxypropyl‐1‐ethoxyethyl ether and then copolymerized with ethylene oxide by the initiation of a mixture of diphenylmethylpotassium and triethylene glycol to give the well‐defined polymer poly(ethylene oxide‐co‐2,3‐epoxypropyl‐1‐ethoxyethyl ether); the latter was hydrolyzed under acidic conditions, and then the recovered copolymer of ethylene oxide and glycidol {poly(ethylene oxide‐co‐glycidol) [poly(EO‐co‐Gly)]} with multiple pending hydroxymethyl groups was esterified with 2‐bromoisobutyryl bromide to produce the macro‐ATRP initiator [poly(EO‐co‐Gly)(ATRP). The latter was used to initiate the polymerization of styrene to form the amphiphilic copolymer brushes. The object products and intermediates were characterized with 1H NMR, matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry, Fourier transform infrared, and size exclusion chromatography in detail. In all cases, the molecular weight distribution of the copolymer brushes was rather narrow (weight‐average molecular weight/number‐average molecular weight < 1.2), and the linear dependence of ln[M0]/[M] (where [M0] is the initial monomer concentration and [M] is the monomer concentration at a certain time) on time demonstrated that the styrene polymerization was well controlled. This method has universal significance for the preparation of copolymer brushes with hydrophilic poly(ethylene oxide) as the main chain. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4361–4371, 2006  相似文献   

4.
A series of novel amphiphilic brush‐dendritic‐linear poly[poly(ethylene glycol) methyl ether methacrylate]‐b‐polyamidoamine‐b‐poly(ε‐caprolactone) copolymers (PPEGMEMA‐b‐Dmb‐PCL) (m = 1, 2, and 3: the generation number of dendron) were synthesized by the combination techniques of click chemistry, atom transfer radical polymerization (ATRP), and ring‐opening polymerization (ROP). The brush‐dendritic copolymers bearing hydrophilic brush PPEGMEMA and hydrophobic dendron polyamidoamine protected by the tert‐butoxycarbonyl (Boc) groups [Dm‐(Boc) (m = 1, 2, and 3)] were for the first time prepared by ATRP of poly(ethylene glycol) methyl ether methacrylate monomer (PEGMEMA) initiated with the dendron initiator, which was prepared from 2′‐azidoethyl‐2‐bromoisobutyrate (AEBIB) and Dm‐(Boc) terminated with a clickable alkyne by click chemistry. Then, the brush‐dendritic copolymers with primary amine groups (PPEGMEMA‐b‐Dm) were obtained from the removal of the protected Boc groups of the brush‐dendritic copolymers in the presence of trifluoroacetic acid. The brush‐dendritic‐linear PPEGMEMA‐b‐Dmb‐PCL copolymers were synthesized from ROP of ε‐caprolactone monomer using PPEGMEMA‐b‐Dm as the macroinitiators and stannous octoate as catalyst in toluene at 130 °C. To the best of our knowledge, this is the first report that integrates hydrophilic brush polymer PPEGMEMA with hydrophobic polyamidoamine (PAMAM) dendron and PCL to form amphiphilic brush‐dendritic‐linear copolymers. The amphiphilic brush‐dendritic‐linear copolymers can self‐assemble into spherical micellar structures in aqueous solution. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

5.
The deposition of polyallylamine (PAA) adlayers by pulsed plasma polymerization on various types of polymeric substrates has been explored as a general route to amino functionalized polymeric surfaces. These amino groups are highly suitable for anchoring an atom transfer radical polymerization (ATRP) initiator via a robust amide linkage. Subsequent surface initiated ATRP (SI‐ATRP) of monomethoxy oligo(ethylene glycol) methacrylate (MeOEGMA) resulted in polyMeOEGMA brush grafted polymer surfaces. This combined strategy of pulsed plasma polymerization with SI‐ATRP was demonstrated for five different polymeric substrates namely polyether ether ketone (PEEK), polyethylene terephthalate (PET), polyimide (PI), polypropylene (PP), and polytetrafluoroethylene (PTFE). Analysis of brush layers by attenuated total reflection infrared (ATR‐IR) spectroscopy as well as X‐ray photoelectron spectroscopy (XPS) fully corroborated the success of the proposed strategy for all substrate types.

  相似文献   


6.
The controlled atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) catalyzed by iron halide/N‐(n‐hexyl)‐2‐pyridylmethanimine (NHPMI) is described. The ethyl 2‐bromoisobutyrate (EBIB)‐initiated ATRP with [MMA]0/[EBIB]0/[iron halide]0/[NHPMI]0 = 150/1/1/2 was better controlled in 2‐butanone than in p‐xylene at 90 °C. Initially added iron(III) halide improved the controllability of the reactions in terms of molecular weight control. The p‐toluenesulfonyl chloride (TsC1)‐initiated ATRP were uncontrolled with [MMA]0/[TsC1]0/[iron halide]0/[NHPMI]0 = 150/1/1/2 in 2‐butanone at 90 °C. In contrast to the EBIB‐initiated system, the initially added iron(III) halide greatly decreased the controllability of the TsC1‐initiated ATRP. The ration of iron halide to NHPMI significantly influenced the controllability of both EBIB and TsC1‐initiated ATRP systems. The ATRP with [MMA]0/[initiator]0/[iron halide]0/[NHPMI]0 = 150/1//1/2 provided polymers with PDIs ≥ 1.57, whereas those with [iron halide]0/[NHPMI]0 = 1 resulted in polymers with PDIs as low as 1.35. Moreover, polymers with PDIs of approximately 1.25 were obtained after their precipitation from acidified methanol. The high functionality of the halide end group in the obtained polymer was confirmed by both 1H NMR and a chain‐extenstion reaction. Cyclic voltammetry was utilized to explain the differing catalytic behaviors of the in situ‐formed complexes by iron halide and NHPMI with different molar ratios. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4882–4894, 2004  相似文献   

7.
Surface‐initiated atom transfer radical polymerization (SI‐ATRP) is successfully applied to electrospun constructs of poly(L ‐lactide). ATRP macroinitiators are adsorbed through polyelectrolyte complexation following the introduction of negative charges on the polyester surface through its blending with a six‐armed carboxy‐terminated oligolactide. SI‐ATRP of glycerol monomethacrylate (GMMA) or 2‐(N,N‐diethylamino)ethyl methacrylate (DEAEMA) allows then to grow surface films with controllable thickness, and in this way also to control the wetting and interactions of the construct.  相似文献   

8.
A variety of polymer microspheres were successfully synthesized by the surface‐initiated atom transfer radical polymerization (SI‐ATRP) of monomers by using monodisperse polymer microsphere having benzyl halide moiety as a multifunctional polymeric initiator. First, a series of monodisperse polymer microsphere having benzyl chloride with variable monomer ratio (P(St‐DVB‐VBC)) were synthesized by the precipitation polymerization of styrene (St), divinylbenzene (DVB), and 4‐vinylbenzyl chloride (VBC). Next, hairy polymer microspheres were synthesized by the surface‐initiated ATRP of various monomers with P(St‐DVB‐VBC) microsphere as a multifunctional polymeric initiator. The hair length determined by the SEC analysis of free polymer was increased with the increase of M/I. These hairy polymer microspheres were characterized by SEM, FT‐IR, and Cl content measurements. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1296–1304  相似文献   

9.
We developed a novel fluorescence labeling technique for quantification of surface densities of atom transfer radical polymerization (ATRP) initiators on polymer particles. The cationic P(St‐CPEM‐C4DMAEMA) and anionic P(St‐CPEM) polymer latex particles carrying ATRP‐initiating chlorine groups were prepared by emulsifier‐free emulsion polymerization of styrene (St), 2‐(2‐chloropropionyloxy)ethyl methacrylate (CPEM), and N‐n‐butyl‐N,N‐dimethyl‐N‐(2‐methacryloyloxy)ethylammonium bromide (C4DMAEMA). ATRP initiators on the surface of polymer particles were converted into azide groups by sodium azide, followed by fluorescent labeling with 5‐(N,N‐dimethylamino)‐N′‐(prop‐2‐yn‐1‐yl)naphthalene‐1‐sulfonamide (Dansyl‐alkyne) by copper‐catalyzed azide‐alkyne cycloaddition (CuAAC). The reaction time required for both azidation of ATRP‐initiating groups and successive fluorescence labeling of azide groups with Dansyl‐alkyne by CuAAC were investigated in detail by FTIR and fluorescence spectral measurement, respectively. The ATRP initiator densities on the cationic P(St‐CPEM‐C4DMAEMA) and anionic P(St‐CPEM) particle surfaces were estimated to be 0.21 and 0.15 molecules nm?2, respectively, which gave close agreement with values previously determined by a conductometric titration method. The fluorescence labeling through click chemistry proposed herein is a versatile technique to quantify the surface ATRP initiator density both on anionic and cationic polymer particles. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4042–4051  相似文献   

10.
A new, simple, and effective method for preparing binary patterned brushes by electrodeposition and self‐assembly is presented. The technique involves the use of electrochemistry to immobilize a chain transfer agent (CTA) on a patterned conducting substrate that mediate surface‐initiated polymerization (SIP) through a reversible addition–fragmentation chain transfer (RAFT) process. The non‐electropatterned surfaces were then backfilled with self‐assembly of an atom transfer radical polymerization (ATRP) silane initiator where the polymerization of the next brush was initiated. The use of techniques such as RAFT and ATRP is well known to give a controlled polymerization mechanism, which would be of great advantage in generating binary patterned brushes. FT‐IR imaging was used to analyze these films.

  相似文献   


11.
An efficient and novel one‐pot process is developed to immobilize the atom transfer radical polymerization (ATRP) initiators onto the surface of fully pyrolyzed carbon hard spheres (CHSs) via a radical trapping process from the in situ thermal decomposition of bis(bromomethylbenzoyl)peroxide. The CHSs do not require any additional preparative treatment prior to the initiator immobilization. Styrene and methyl methacrylate are polymerized onto initiator‐immobilized CHSs by surface‐initiated atomic transfer radical polymerization (SI‐ATRP). Samples are characterized using Fourier transform infrared, thermogravimetric analysis, scanning electron microscopy, and transmission electron microscopy. These methods of characterization confirmed that all the CHSs are coated with a uniform layer of grafted polymer. This efficient, one‐pot immobilization of ATRP‐initiators represents an exceptionally simple route for the rapid preparation of various polymer‐coated carbon‐based nanomaterials using SI‐ATRP. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3314–3322  相似文献   

12.
Herein, we describe a simple and robust approach to repeatedly modify surfaces with polymer brushes through surface‐initiated atomic transfer radical polymerization (SI‐ATRP), based on an initiator‐embedded polystyrene sheet that does not rely on specific surface chemistries for initiator immobilization. The surface‐grafted polymer brushes can be wiped away to expose fresh underlying initiator that re‐initiates polymerization. This strategy provides a facile route for modification of molded or embossed surfaces, with possible applications in the preparation of fluidic devices and polymer‐embedded circuits.  相似文献   

13.
Novel and well‐defined pyrene‐containing eight‐arm star‐shaped dendrimer‐like copolymers were successfully achieved by combination of esterification, atom transfer radical polymerization (ATRP), divergent reaction, ring‐opening polymerization (ROP), and coupling reaction on the basis of pentaerythritol. The reaction of pentaerythritol with 2‐bromopropionyl bromide permitted ATRP of styrene (St) to form four‐arm star‐shaped polymer (PSt‐Br)4. The molecular weights of these polymers could be adjusted by the variation of monomer conversion. Eight‐hydroxyl star‐shaped polymer (PSt‐(OH)2)4 was produced by the divergent reaction of (PSt‐Br)4 with diethanolamine. (PSt‐(OH)2)4 was used as the initiator for ROP of ε‐caprolactone (CL) to produce eight‐arm star‐shaped dendrimer‐like copolymer (PSt‐b‐(PCL)2)4. The molecular weights of (PSt‐b‐(PCL)2)4 increased linearly with the increase of monomer. After the coupling reaction of hydroxyl‐terminated (PSt‐b‐(PCL)2)4 with 1‐pyrenebutyric acid, pyrene‐containing eight‐arm star‐shaped dendrimer‐like copolymer (PSt‐b‐(PCL‐pyrene)2)4 was obtained. The eight‐arm star‐shaped dendrimer‐like copolymers presented unique thermal properties and crystalline morphologies, which were different from those of linear poly(ε‐caprolactone) (PCL). Fluorescence analysis indicated that (PSt‐b‐(PCL‐pyrene)2)4 presented slightly stronger fluorescence intensity than 1‐pyrenebutyric acid when the pyrene concentration of them was the same. The obtained pyrene‐containing eight‐arm star‐shaped dendrimer‐like copolymer has potential applications in biological fluorescent probe, photodynamic therapy, and optoelectronic devices. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2788–2798, 2008  相似文献   

14.
The combination of atom transfer radical polymerization (ATRP) and click chemistry has created unprecedented opportunities for controlled syntheses of functional polymers. ATRP of azido‐bearing methacrylate monomers (e.g., 2‐(2‐(2‐azidoethyoxy)ethoxy)ethyl methacrylate, AzTEGMA), however, proceeded with poor control at commonly adopted temperature of 50 °C, resulting in significant side reactions. By lowering reaction temperature and monomer concentrations, well‐defined pAzTEGMA with significantly reduced polydispersity were prepared within a reasonable timeframe. Upon subsequent functionalization of the side chains of pAzTEGMA via Cu(I)‐catalyzed azide‐alkyne cycloaddition (CuAAC) click chemistry, functional polymers with number‐average molecular weights (Mn) up to 22 kDa with narrow polydispersity (PDI < 1.30) were obtained. Applying the optimized polymerization condition, we also grafted pAzTEGMA brushes from Ti6Al4 substrates by surface‐initiated ATRP (SI‐ATRP), and effectively functionalized the azide‐terminated side chains with hydrophobic and hydrophilic alkynes by CuAAC. The well‐controlled ATRP of azido‐bearing methacrylates and subsequent facile high‐density functionalization of the side chains of the polymethacrylates via CuAAC offers a useful tool for engineering functional polymers or surfaces for diverse applications. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1268–1277  相似文献   

15.
A novel miktofunctional initiator ( 1 ), 2‐hydroxyethyl 3‐[(2‐bromopropanoyl)oxy]‐2‐{[(2‐bromopropanoyl)oxy]methyl}‐2‐methyl‐propanoate, possessing one initiating site for ring‐opening polymerization (ROP) and two initiating sites for atom transfer radical polymerization (ATRP), was synthesized in a three‐step reaction sequence. This initiator was first used in the ROP of ?‐caprolactone, and this led to a corresponding polymer with secondary bromide end groups. The obtained poly(?‐caprolactone) (PCL) was then used as a macroinitiator for the ATRP of tert‐butyl acrylate or methyl methacrylate, and this resulted in AB2‐type PCL–[poly(tert‐butyl acrylate)]2 or PCL–[poly(methyl methacrylate)]2 miktoarm star polymers with controlled molecular weights and low polydispersities (weight‐average molecular weight/number‐average molecular weight < 1.23) via the ROP–ATRP sequence. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2313–2320, 2004  相似文献   

16.
Pristine carbon black was oxidized with nitric acid to produce carboxyl group, and then the carboxyl group was consecutively treated with thionyl chloride and glycol to introduce hydroxyl group. The hydroxyl group on the carbon black surface was reacted with 2‐bromo‐2‐methylpropionyl bromide to anchor atom transfer radical polymerization (ATRP) initiator. The ATRP initiator on carbon black surface was verified by TGA, FTIR, EDS, and elemental analysis. Then, poly (methyl methacrylate) and polystyrene chains were respectively, grown from carbon black surface by surface‐initiated atom transfer radical polymerization (SI‐ATRP) using CuCl/2,2‐dipyridyl (bpy) as the catalyst/ligand combination at 110 °C in anisole. 1H NMR, TGA, TEM, AFM, DSC, and DLS were used to systemically characterize the polymer‐grafted carbon black nanoparticles. Dispersion experiments showed that the grafted carbon black nanoparticles had good solubilities in organic solvents such as THF, chloroform, dichloromethane, DMF, etc. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3451–3459, 2007  相似文献   

17.
Hybrid nanoarchitecture of tailor‐made Poly(ethyl acrylate)/clay was prepared by surface‐initiated atom transfer radical polymerization (SI‐ATRP), by tethering ATRP initiator on active hydroxyl group, present in surface as well as in the organic modifier of the clay used. Extensive exfoliation was facilitated by using these initiator modified clay platelets. Poly(ethyl acrylate) chains with controlled polymerization and narrow polydispersities were forced to be grown from within the clay gallery (intergallery) as well as from the outer surface (extragallery) of the clay platelets. The polymer chains attached onto clay surfaces might have the potential to provide the composites with enhanced compatibility in blends with common polymers. Attachment of the initiator on clay platelets was confirmed by Fourier transform infrared spectroscopy (FTIR), X‐ray photoelectron spectroscopy (XPS), elemental analysis, Wide‐angle X‐ray diffraction (WAXD), and microscopic analysis. Finally, end group analysis (by Matrix‐Assisted Laser Desorption Ionization Mass Spectrometry, and chain extension experiment) of the cleaved polymer and morphological study (by WAXD, Transmission Electron Microscopy), performed on the polymer grafted clays examined the effect of grafting on the efficiency of polymerization and the degree of dispersion of clay tactoids in polymer. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5014–5027, 2008  相似文献   

18.
Poly(siloxane‐fluoroacrylate)‐grafted silica hybrid nanoparticles were prepared by surface‐initiated atom transfer radical polymerization (SI‐ATRP). The silica nanoparticles with α‐bromo‐ester initiator group for copper‐mediated ATRP were prepared by the self‐assembled monolayers of (3‐aminopropyl)triethoxysilane and 2‐bromoisobutyrate bromide. Well‐defined diblock copolymer brushes consisting of poly(methacryloxypropyltrimethoxysilane) and poly(2,2,3,3,4,4,4‐heptafluorobutyl methacrylate) blocks were obtained by using initial homopolymer brushes as the macroinitiators for the SI‐ATRP of the second monomer. Chemical compositions and structures of the nanoparticles were characterized by Fourier transform infrared spectroscopy, proton nuclear magnetic resonance spectroscopy, and gel permeation chromatography. Surface properties and morphology of the nanoparticles were investigated with X‐ray photoelectron spectroscopy, scanning electron microscopy, atomic force microscopy, and water contact angle measurement. It is revealed that the surfaces of the nanocomposites are rough at the microscale and nanoscale. The formation reason of the superhydrophobic surfaces was also discussed in this work. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

19.
An asymmetric difunctional initiator 2‐phenyl‐2‐[(2,2,6,6 tetramethylpiperidino)oxy] ethyl 2‐bromo propanoate ( 1 ) was used for the synthesis of ABC‐type methyl methacrylate (MMA)‐tert‐butylacrylate (tBA)‐styrene (St) triblock copolymers via a combination of atom transfer radical polymerization (ATRP) and stable free‐radical polymerization (SFRP). The ATRP‐ATRP‐SFRP or SFRP‐ATRP‐ATRP route led to ABC‐type triblock copolymers with controlled molecular weight and moderate polydispersity (Mw/Mn < 1.35). The block copolymers were characterized by gel permeation chromatography and 1H NMR. The retaining chain‐end functionality and the applying halide exchange afforded high blocking efficiency as well as maintained control over entire routes. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2025–2032, 2002  相似文献   

20.
A free‐standing polymer brush film with tailored thicknesses based on a colorless polydopamine (PDA) thin layer is prepared and characterized. The surface‐initiated atom transfer radical polymerization (ATRP) of 2‐hydroxyethyl methacrylate (HEMA) is performed on a PDA layer with thickness of ca. 6 nm, which generated an optically transparent and colorless free‐standing PHEMA brush film (1.5 cm × 1.5 cm). Because the cross‐linked PDA layer is used as the base for the polymer brushes, the reported method does not require cross‐linking the polymer brushes. The free‐standing film thicknesses of ≈16–75 nm are controlled by simply changing the ATRP reaction time. The results show that the free‐standing PHEMA brush film transferred onto a plate exhibits a relatively smooth surface and is stable in any solvent.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号