首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper first reviews an EUV normal incidence solar telescope that we have developed in our lab. The telescope is composed of four EUV telescopes and the operation wavelengths are 13.0 nm, 17.1 nm, 19.5 nm, and 30.4 nm. These four wavelengths, fundamental to the research of the solar activity and the atmosphere dynamics, are always chosen by the EUV normal incidence solar telescope. In the EUV region, almost all materials have strong absorption, so optics used in this region must be coated by the multila...  相似文献   

2.
In this paper we have reviewed our achievements in soft X-ray and extreme ultraviolet (EUV) optics. Up to now, the research system of soft X-ray and EUV optics has been established, including light sources, detectors, calibrations, optical testing and machining of super smooth mirrors, and fabrications of multilayer film mirrors. Based on our achievements, we have developed two types of solar space telescopes for the soft X-ray and EUV space solar observations. One is an EUV multilayer normal incident telescope array including 4 different operation wavelength telescopes. The operation wavelengths of the EUV telescope are 13.0, 17.1, 19.5 and 30.4 nm. The other is a complex space solar telescope, which is composed of an EUV multilayer normal incident telescope and a soft X-ray grazing incident telescope. The EUV multilayer normal incident telescope stands in the central part of the soft X-ray grazing incident telescope. The normal incident telescope and the grazing incident telescope have a common detector. The different operation wavelengths can be changed by rotating a filter wheel.  相似文献   

3.
陈波  苏宙平  尼启良 《光学技术》2005,31(2):315-318
介绍了一种不同波段的超紫外望远镜在轨指向的标定方法。此方法利用四个波段(13.0,17.1,19.5,30.4nm)的超紫外望远镜均有较高的光谱响应和能够对较强的太阳辐射光谱成像的特点,根据由不同的望远镜所获得的太阳的四个图像的变化,计算出了四个望远镜间的指向偏差。根据四个不同波段的超紫外望远镜的光学性能和太阳紫外辐射谱线的亮度优化出了具体的太阳辐射谱线,并对所选用的标定谱线的可行性进行了分析。该方法的在轨标定精度为0.1″。  相似文献   

4.
An extreme ultra-violet(EUV) wave is characterized as a bright pulse that has emanated from the solar eruption source and can propagate globally in the solar corona. According to one leading theory, the EUV wave is a fast magnetoacoustic wave, as the coronal counterpart of the Moreton wave in the chromosphere. However, previous observations have shown that the EUV wave differs significantly from the Moreton wave in both velocity and lifetime. To reconcile these differences, here we analyze the wave characteristics of a two-fluid MHD model in the stratified solar atmosphere with a height-dependent ionization rate. It is found that the collision between neutral and ionized fluids is able to attenuate the wave amplitude, while causing a slight change in its propagation velocity. Because the chromosphere has the lower ionization rate and the stronger magnetic fields than the corona,the velocity of the Moreton wave is much higher than that of the EUV wave. In contrast to the Moreton waves damped strongly by the collision between neutral and ionized fluids, the EUV wave in the fully ionized corona is able to propagate globally on a time scale of several hours. Our results support the previous theory that fast magnetoacoustic waves account for both EUV and Moreteon waves in the different layers of the solar atmosphere.  相似文献   

5.
极紫外光谱观测和诊断是研究太阳大气基本物理过程的最重要手段之一。但因为波长短,很多可见光仪器的设计方案不再适用,且极紫外观测只能在太空中开展。国际上现有卫星上的太阳极紫外成像仪和光谱仪都有各自的不足,比如极紫外成像仪不能获得高光谱分辨率的谱线信息;狭缝式光谱仪通过扫描可得到活动区域的信息,但扫描时间过长,对于研究剧烈变化的太阳活动有很大的局限性。这些不足制约了对日冕物质抛射(CME)和耀斑等太阳活动的高精度观测及对其机理的研究:无法看到CME在内日冕的加速过程,而且无法将可见光看到的CME现象同极紫外看到的日面源区直接联系;缺少观测目标的视向速度信息,难以识别CME的触发过程。采用多级衍射成像方式的一种新型太阳极紫外成像仪,除实现传统极紫外成像仪功能外,还可以在太阳活动变化过程中同步获得全日面各区域的光谱信息。新型成像仪可以得到高光谱分辨率数据,用于反演低日冕的等离子体视向速度,获得全日面的速度分布,与同时得到的高空间分辨率图像相结合,可以识别太阳活动现象对应的物质运动, 为空间科学研究提供数据;因为没有狭缝和运动部件,可以实现对大视场的太阳活动区域的高时间分辨率成像,有利于捕捉日面活动的快速变化。新型成像仪采用无狭缝光谱分光成像的设计理念,即同一时间把一定光谱带宽的信息记录到一个二维的图像上,此过程可以看成是从某一个角度将空间和光谱数据立方体投影到一个面上,然后再利用反演得到空间分辨图像和光谱信息。多级光谱成像的光学设计与传统光谱仪最大的不同是其不存在逐行扫描的狭缝,这使得其能够同时获得大视场内太阳的空间信息和光谱信息。因为极紫外波段的特殊性,以及本仪器面向卫星遥感应用,不可能像可见光波段或者医用CT机一样实现很多衍射级的同时成像。因此,新型极紫外成像仪光学系统由反射镜、色散光栅和五个探测器组成,入射的太阳极紫外辐射经过光栅色散后分别由五个级次的探测器接收,其中四个探测器分部接收±1和±2衍射级图像,另外一个接收0级图像。空间信息可以直接从0级图像得到,而光谱信息则需要根据五个级次成像的反演结果得出。介绍了光学系统的设计以及反演算法,并分析了反演算法的误差。光路基于变间距光栅设计,可实现空间分辨率1.8 arcsec·pixel-1, 光谱分辨率7.8×10-3 nm·pixel-1,同时减小了体积和重量,适合空间应用。  相似文献   

6.
By data of the 23rd solar cycle, it is shown that close statistical relations exist between quantitative parameters of dimmings and arcades caused by solar coronal mass ejections (CMEs), on the one hand, and magnitudes of non-recurrent Forbush-decreases of the galactic cosmic ray flux, as well as the propagation time of disturbances from the Sun to the Earth, on the other hand. Parameters of dimmings and arcades, in particular their summarized magnetic flux of the prolonged field at the photospheric level, were calculated by data of the EUV SOHO/EIT telescope in the 195 Å Received results mean that the scale, characteristics, and propagation time of interplanetary disturbances to the Earth are determined to a large degree by measurable parameters of solar eruptions and may be estimated in advance by observations of dimmings and arcades in the EUV range.  相似文献   

7.
19.5nm极紫外反射镜的研制   总被引:1,自引:0,他引:1  
介绍了一种用于太阳观测19.5nm极紫外多层膜的研究工作。利用软件对规整的Mo/Si膜系结构进行了优化,拓宽了反射带宽,提高了积分反射率。采用双离子束溅射技术,时间控厚,成功制备了该反射镜。通过同步辐射反射率计测试表明,峰值反射率27.5%,均匀性在1%以内,已初步达到预设要求。  相似文献   

8.
空间太阳极紫外(EUV)成像望远镜   总被引:1,自引:0,他引:1  
太阳极紫外和X射线成像观测是空间天气研究的重要内容,空间太阳极紫外(EUV)成像望远镜是为空间天气研究和预报研制的仪器。介绍了国内外太阳极紫外和X射线成像的发展状况,在此基础上引入19.5nm成像观测的科学目标。阐述了望远镜光学系统和成像相机传感器的设计。前者包括光学结构和基本参数、光学窗口的选择、多层膜设计、光学系统仿真结果;后者包括两种不同成像传感器的对比和选择、控制系统的设计。  相似文献   

9.
总结并讨论了极紫外光刻技术中,有关极紫外光学器件受辐照污染的"在线"检测方法。简要介绍了极紫外光刻系统的原理、反射镜膜层结构以及表面污染产生的机理;指出光刻系统中"在线"检测的技术要求;分析了目前几种主要表面检测技术的特点;给出了每种方法在极紫外光学系统中的应用潜力;最后,指出光纤椭偏仪在极紫外光学系统的"在线"表面污染检测中具有良好的应用前景。  相似文献   

10.
太阳过渡区是太阳色球层顶到日冕底部的大气薄层。厚度仅几百千米,但其间太阳等离子体参数变化剧烈。过渡区的辐射多为光学薄的远紫外、极紫外发射谱线和背景连续谱线。由于地球大气的吸收,过渡区紫外光谱需通过天基观测才能实现。近几十年来,星载仪器的成功发射为太阳过渡区的研究打开了新纪元。工作回顾了太阳过渡区紫外光谱的观测历史和各类星载仪器,特别介绍了近十几年几种重要的光谱仪器。详细阐述了过渡区紫外光谱的发生率、电子密度和电子温度的诊断原理。讨论了过渡区紫外谱线的形状,并以SOHO/SUMER光谱仪为例介绍了表征谱线的几种重要参量及其物理意义。  相似文献   

11.
We have developed an Ir/Si multilayer for extreme ultraviolet (EUV) applications. Normal incidence reflectance measurements of a prototype film tuned to 30 nm wavelength show superior performance relative to a conventional Mo/Si multilayer structure; we also find good stability over time. Transmission electron microscopy and electron dispersive x-ray spectroscopy have been used to examine the microstructure and interface properties of this system: we find amorphous Si layers and polycrystalline Ir layers, with asymmetric interlayer regions of mixed composition. Potential applications of Ir/Si multilayers include instrumentation for solar physics and laboratory EUV beam manipulation.  相似文献   

12.
In this paper, we present a study on two-channel multilayer mirrors which can operate at two wavelengths in Extreme Ultraviolet (EUV) spectral range. We propose a new method to design two-channel EUV multilayer mirrors with enhanced spectral selectivity. The mirror structure is a stack of two periodic multilayers separated by a buffer layer. We have defined the main parameters which allow adjustment of the distance between different order Bragg’s peak and of wavelength positions of reflectivity minima. Two mirrors have been designed and deposited for solar EUV telescope applications by using this method. The first mirror reflects Fe IX–X line (17.1 nm) and Fe XVI (33.5 nm) lines with attenuation of the He II line (30.4 nm). The second mirror reflects Fe IX–X and He II lines with attenuation of Fe XV (28.4 nm) and Fe XVI lines. Measurements with synchrotron radiation source confirm that, in both cases, for these mirrors, we are able to adjust reflectivity maxima (Bragg peak position) and minima. Such multilayers offer new possibilities for compact design of multi-wavelength EUV telescopes and/or for high spectral selectivity.  相似文献   

13.
We have fabricated periodic multilayers that comprise either Si/Tb or SiC/Tb bilayers, designed to operate as narrowband reflective coatings near 60 nm wavelength in the extreme ultraviolet (EUV). We find peak reflectance values in excess of 20% near normal incidence. The spectral bandpass of the best Si/Tb multilayer was measured to be 6.5 nm full width at half-maximum (FWHM), while SiC/Tb multilayers have a more broad response, of order 9.4 nm FWHM. Transmission electron microscopy analysis of Si/Tb multilayers reveals polycrystalline Tb layers, amorphous Si layers, and relatively large asymmetric amorphous interlayers. Thermal annealing experiments indicate excellent stability to 100 degrees C (1 h) for Si/Tb. These new multilayer coatings have the potential for use in normal incidence instrumentation in a region of the EUV where efficient narrowband multilayers have not been available until now. In particular, reflective Si/Tb multilayers can be used for solar physics applications where the coatings can be tuned to important emission lines such as O V near 63.0 nm and Mg X near 61.0 nm.  相似文献   

14.
In this article, we report that by using the intensity ratio of the (2-2) to (1-2) component of CI emission lines at about 165.7 nm, we determined the optical depth at the line center of the (2-2) component of CI emission lines by escape factor treatment. The optical depth at the line center of the (2-2) component is calculated to be 0.9998, which is a more reasonable value of solar spectral lines than the value that has been reported. The variation of the optical depth at the line center for different positions from the solar limb is discussed. Using the measured abundance of carbon and the results of ionization balance calculations, we estimate the electron density in the CI emitting region. The density of hydrogen is estimated in the CI emitting region by this method, and is testified to be a better value than the value that has been reported. This discussion will be significant in the analysis of opacity on the solar ultraviolet (UV) or extreme-ultraviolet (EUV) spectrum.  相似文献   

15.
A laser-plasma EUV source is described, which is going to be utilized for characterization of EUV optical components and sensoric devices in the wavelength region from 11 to 13 nm. EUV radiation is generated by focusing a Nd:YAG laser into a double stream gas puff target. By the use of different target gases, broadband as well as narrow-band EUV radiation can be obtained. The emission characteristics of the radiation is monitored by the help of different diagnostic tools including a pinhole camera, an EUV spectrometer, and various EUV photodiodes, either directly or after reflection from multilayer mirrors. Theoretical calculations of collision-induced energy transfer are given in order to explain the observed high degree of electronic excitation in the utilized target gases.  相似文献   

16.
Imaging systems with nanometer resolution are instrumental to the development of the fast evolving field of nanoscience and nanotechnology. Decreasing the wavelength of illumination is a direct way to improve the spatial resolution in photon-based imaging systems and motivated a strong interest in short wavelength imaging techniques in the extreme ultraviolet (EUV) region. In this review paper, various EUV imaging techniques, such as 2D and 3D holography, EUV microscopy using Fresnel zone plates, EUV reconstruction of computer generated hologram (CGH) and generalized Talbot self-imaging will be presented utilizing both coherent and incoherent compact laboratory EUV sources. Some of the results lead to the imaging with spatial resolution reaching 50 nm in a very short exposure time. These techniques can be used in a variety of applications from actinic mask inspection in the EUV lithography, biological imaging to mask-less lithographic processes in nanofabrication.  相似文献   

17.
The paper describes a debris-free, efficient laser-produced plasma source emitting EUV radiation. The source is based on a double-stream Xe/He gas-puff. Its properties and spectroscopic signatures are characterized and discussed. The spatio-spectral features of the EUV emission are investigated. We show a large body of results related to the intensity and brightness of the EUV emission, its spatial, temporal, and angular behavior and the effect of the repetition rate as well. A conversion efficiency of laser energy into EUV in-band energy at 13.5 nm of 0.42% has been gained. The electron temperature and electron density of the source were estimated by means of a novel method using the FLY code. The experimental data and the Hullac code calculations are compared and discussed. The source is well suited for EUV metrology purposes. The potential of the source for application in EUV lithography was earlier demonstrated in the optical characterization of Mo/Si multi-layer mirrors and photo-etching of polymers.  相似文献   

18.
An EUV reflectometer for the analysis of surfaces and thin films regarding refractive index, surface roughness, and mass density at the wavelength of 12.98?nm was developed. The setup uses a laser produced plasma source with an oxygen gas puff target for the generation of narrow-band EUV radiation and a flexible Kirkpatrick–Baez optics for focusing. We present EUV reflectometry (EUVR) measurements conducted on a series of carbon thin films to determine thickness and mass density of the coatings. In case of the thickness measurements results are compared to data obtained from nondestructive standard methods, i.e., grazing incidence X-ray reflectometry and spectroscopic ellipsometry. In addition, we propose a method to deduce the mass density of a sample directly from the fitted index of refraction obtained from EUVR measurements.  相似文献   

19.
陈鸿  兰慧  陈子琪  刘璐宁  吴涛  左都罗  陆培祥  王新兵 《物理学报》2015,64(7):75202-075202
采用波长13.5 nm的极紫外光作为曝光光源的极紫外光刻技术是最有潜力的下一代光刻技术之一, 它是半导体制造实现10 nm及以下节点的关键技术. 获得极紫外辐射的方法中, 激光等离子体光源凭借转换效率高、收集角度大、碎屑产量低等优点而被认为是最有前途的极紫外光源. 本文开展了脉冲TEA-CO2激光和Nd:YAG激光辐照液滴锡靶产生极紫外辐射的实验, 对极紫外辐射的谱线结构以及辐射的时空分布特性进行了研究.实验发现: 与TEA-CO2激光相比, 较高功率密度的Nd:YAG激光激发的极紫外辐射谱存在明显的蓝移; 并且激光等离子体光源可以认为是点状光源, 其极紫外辐射强度随空间角度变化近似满足Lambertian分布.  相似文献   

20.
极紫外多层膜技术研究进展   总被引:2,自引:0,他引:2  
张立超 《中国光学》2010,3(6):554-565
在极紫外波段,任何材料都表现出极强的吸收特性,因此,采用多层膜实现高反射率是构建正入射式光学系统的唯一途径。本文总结了极紫外多层膜的发展进程,叙述了制备极紫外多层膜的关键技术(磁控溅射、电子束蒸发、离子束溅射)以及它们涉及的相关设备。由于多层膜反射式光学元件主要应用于极紫外光刻与极紫外天文观测,文中重点讨论了极紫外光刻系统对多层膜性能的要求,镀膜过程中的面形精度和热稳定性等问题;同时介绍了极紫外天文观测中使用的多层膜的特点,特别讨论了多层膜光栅的制备技术和亟待解决的问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号