首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 741 毫秒
1.
Chemical mechanical polishing is a fundamental technology used in the semiconductor manufacturing industry to polish and planarize a wide range of materials for the fabrication of microelectronic devices. During the high-shear (~1,000,000 s?1) polishing process, it is hypothesized that individual slurry particles are driven together to form large agglomerates (≥0.5 µm). These agglomerates are believed to trigger a shear-induced thickening effect and cause defects during polishing. We examined how the addition of various monovalent salts (CsCl, KCl, LiCl, and NaCl) and electrostatic stabilizing bases (KOH, NaOH, or CsOH) influenced the slurry’s thickening behavior. Overall, as the added salt concentration was increased from 0.02 to 0.15 M, the shear rate at which the slurry thickened (i.e., the critical shear rate) decreased. Slurries with added CsCl, NaCl, and LiCl thickened at comparable shear rates (~20,000–70,000 s?1) and, in general, followed ion hydration theory (poorly hydrated ions caused the slurry to thicken at lower shear rates). However, slurries with added KCl portrayed thickening behavior at higher critical shear rates (~35,000–100,000 s?1) than other chloride salts. Also, slurries stabilized with CsOH thickened at higher shear rates (~90,000–140,000 s?1), regardless of the added salt cation or concentration, than the slurries with KOH or NaOH. The NaOH-stabilized slurries displayed thickening at the lowest shear rates (~20,000 s?1). The thickening dependence on slurry base cation indicates the existence of additional close-range structure forces that are not predicted by the Derjaguin–Landau–Verwey–Overbeek colloidal stability theory.  相似文献   

2.
K-shell X-ray emission from laser-irradiated planar Zn, Ge, Br, and Zr foils was measured at the National Ignition Facility for laser irradiances in the range of 0.6–9.5 × 1015 W/cm2. The incident laser power had a pre-pulse to enhance the laser-to-X-ray conversion efficiency (CE) of a 2–5 ns constant-intensity pulse used as the main laser drive. The measured CE into the 8–16 keV energy band ranged from 0.43% to 2%, while the measured CE into the He-like resonance 1s2–1s2p(1P) and intercombination 1s2–1s2p(3P) transitions, as well as from their 1s2(2s,2p)l–1s2p(2s,2p)l satellite transitions for l = 1, 2, 3, corresponding to the Li-, Be-, and B-like resonances, respectively, ranged from 0.3% to 1.5%. Absolute and relative CE measurements are consistent with X-ray energy scaling of ()?3 to ()?5, where is the X-ray energy. The temporal evolution of the broadband X-ray power was similar to the main laser drive for ablation plasmas having a critical density surface.  相似文献   

3.
Engineering nanostructures in metallic materials such as nanograins and nanotwins can promote plastic performance significantly. Nano/ultrafine-grained metals embedded in coarse grains called bimodal metals and nanotwinned polycrystalline metals have been proved to possess extensively improved yield strength whilst keeping good ductility. This paper will present an experimental study on nanostructured stainless steel prepared by surface mechanical attrition treatment (SMAT) with surface impacts of lower strain rate (10 s?1–103 s?1) and higher strain rate (104 s?1–105 s?1). Microstructure transition has been observed from the original γ-austenite coarse grains to α′-martensite nanograins with bimodal grain size distribution for lower strain rates to nanotwins in the ultrafine/coarse grained austenite phase for higher strain rates. Meanwhile, we will further address the mechanism-based plastic models to describe the yield strength, strain hardening and ductility in nanostructured metals with bimodal grain size distribution and nanotwinned polycrystalline metals. The proposed theoretical models can comprehensively describe the plastic deformation in these two kinds of nanostructured metals and excellent agreement is achieved between the numerical and experimental results. These models can be utilized to optimize the strength and ductility in nanostructured metals by controlling the size and distribution of nanostructures.  相似文献   

4.
This paper investigates the effect of vapour super-heating on hydrocarbon refrigerant 600a (Isobutane), 290 (Propane) and 1270 (Propylene) condensation inside a brazed plate heat exchanger.Vapour super-heating increases heat transfer coefficient with respect to saturated vapour, whereas no effect was observed on pressure drop.The super-heated vapour condensation data shows the same trend vs. refrigerant mass flux as the saturated vapour condensation data, but with higher absolute values. A transition point between gravity controlled and forced convection condensation has been found for a refrigerant mass flux around 15-18 kg m−2 s−1 depending on refrigerant type. The super-heated vapour heat transfer coefficients are from 5% to 10% higher than those of saturated vapour under the same refrigerant mass flux.The experimental heat transfer coefficients have been compared against Webb (1998) model for forced convection condensation of super-heated vapour: the mean absolute percentage deviation between the experimental and calculated data is ±18.3%.HC-1270 shows super-heated vapour heat transfer coefficient 5% higher than HC-600a and 10-15% higher than HC-290 together with total pressure drops 20-25% lower than HC-290 and 50-66% lower than HC-600a under the same mass flux.  相似文献   

5.
The extended theory of the steady state laminar film condensation process of pure saturated vapour at atmospheric pressure on an isothermal vertical flat plate is established. Its equations provide a complete account of the physical process for consideration of various physical factors including variable thermophysical properties, except for surface tension at the liquid-vapour film interface. First, similarity considerations are proposed to transform the governing system of partial differential equations and its boundary conditions into the corresponding dimensionless system. Then, the dimensionless new system is computed numerically in two steps: First neglecting shear force at the interface, so that the initial values of the boundary conditionsW xl, s andW yl, s are obtained. Then, the calculations of a problem of the three-point boundary-value for coupling the equations of liquid film with those of vapour film are carried out. Furthermore, the correlations for heat transfer coefficient and mass flow rate are proposed by analysis of heat and mass transfer and it is found that the heat transfer coefficient is function of dimensionless temperature gradient $\dot L$ , and that the condensate mass flow rate is function of the mass flow rate parameter (η W xl, s ? 4W yl, s )of liquid. In addition, the corresponding heat and mass transfer correlations expressed by subcooled temperature Δt are developed. According to Nusselt's theory four different assumptions are set up for an investigation of the effects of the film condensation of saturated vapour, so that the validity of Nusselt's theory can be further clarified. Quantitative comparisons from the results of the heat transfer coefficient and mass flow rate of the condensate indicate that the effect of variable thermophysical properties on the heat and mass transfer is appreciable. The effect of thermal convection in the condensate film is obviously larger than those of shear force at liquid-vapour interface, and the effect of the inertia in the condensate film is very small. Finally, it is also shown that Nusselt's theory, in using Drew reference temperature, will decrease the heat transfer coefficient by at most 5.11%, and will increase the mass flow rate of the condensate by at most 2.45%, provided that the effect of the surface tension is not taken into account.  相似文献   

6.
Moisture content gradients along the bed column are commonly neglected during simulation of deep-bed grain drying. In this study, rough rice drying kinetics at various thin layers of a deep bed was investigated. The experiments were conducted under different drying conditions and the data were compared with the values predicted by a previously developed non-equilibrium model for numerical simulation of grain drying. The moisture content gradients related to the rough rice column indicated that the higher the drying layer, the more was the moisture content at each drying time. The constant drying rate period was observed neither for any thin layers nor for the entire drying column. The drying rate of the lower layers continuously decreased with drying time, whereas that of the upper layers firstly increased and then decreased. The implemented model predicted drying process with a high accuracy at various layers. However, the values of maximum relative error (RE max ) and mean relative error (MRE) increased as the air temperature increased, and reversely decreased with the air velocity. The higher values of MRE and RE max were related to the layer 1 (0–5 cm bed height) at temperature of 60 °C and air velocity of 0.4 m s?1, and the lower values belonged to the layer 4 (15–20 cm bed height) at temperature of 40 °C and air velocity of 0.9 m s?1.  相似文献   

7.
An orthotropic polymeric foam with transverse isotropy (Divinycell H250) used in composite sandwich structures was characterized at various strain rates. Uniaxial experiments were conducted along principal material axes as well as along off-axis directions under tension, compression, and shear to determine engineering constants, such as Young??s and shear moduli. Uniaxial strain experiments were conducted to determine mathematical stiffness constants, i. e., C ij . An optimum specimen aspect ratio for these tests was selected by means of finite element analysis. Quasi-static and intermediate strain rate tests were conducted in a servo-hydraulic testing machine. High strain rate tests were conducted using a split Hopkinson Pressure Bar system built for the purpose using polymeric (polycarbonate) bars. The polycarbonate material has an impedance that is closer to that of foam than metals and results in lower noise to signal ratios and longer loading pulses. It was determined by analysis and verified experimentally that the loading pulses applied, propagated along the polycarbonate rods at nearly constant phase velocity with very low attenuation and dispersion. Material properties of the foam were obtained at three strain rates, quasi-static (10?4 s?1), intermediate (1 s?1), and high (103 s?1) strain rates. A simple model proposed for the Young??s modulus of the foam was in very good agreement with the present and published experimental results.  相似文献   

8.
Experimental and theoretical investigations have been performed on critical heat flux (CHF) and turbulent mixing in tight, hexagonal, 7-rod bundles. Freon-12 was used as working fluid due to its low latent heat, low critical pressure and well known properties. It has been found that the two-phase mixing coefficient depends mainly on mass flux. It increases with decreasing mass flux and ranges from 0.01 to 0.04 for the test conditions considered. More than 900 CHF data points have been obtained in a large range of parameters: pressure 1.0–3.0 MPa and mass flux 1.0–6.0 Mg/m2s. The effect of different parameters on CHF has been analysed. It has been found that the effect of pressure, mass flux and vapour quality on CHF is similar to that observed in circular tubes. Nevertheless, the CHF in the tight rod bundle is much lower than that in a circular tube of the same equivalent hydraulic diameters. The effect of wire wraps on CHF is mainly dependent on local vapour qualities and subsequently on flow regimes. Based on subchannel flow conditions, the effect of radial power distribution on CHF is small. Comparison of the test results with CHF prediction methods underlines the need for further work.  相似文献   

9.
A model is developed for the study of mixed- convection film condensation from downward flowing vapors onto a sphere with variable wall temperature. The model combined natural convection dominated and forced convection dominated film condensation, concerning effects of pressure gradient (P), interfacial vapor shear drag and non-uniform wall temperature variation (A), has been investigated and solved numerically. The effect of pressure gradient on the dimensionless mean heat transfer, NuˉRe−1/2 will remain almost uniform with increasing P until for various corresponding available values of F. Meanwhile, the dimensionless mean heat transfer, NuˉRe−1/2 is increasing significantly with F for its corresponding available values of P. Although the non-uniform wall temperature variation has an appreciable influence on the local film flow and heat transfer; however, the dependence of mean heat transfer on A can be almost negligible. Received on 10 October 1996  相似文献   

10.
A high strain rate tensile testing technique for sheet materials is presented which makes use of a split Hopkinson pressure bar system in conjunction with a load inversion device. With compressive loads applied to its boundaries, the load inversion device introduces tension into a sheet specimen. Two output bars are used to minimize the effect of bending waves on the output force measurement. A Digital Image Correlation (DIC) algorithm is used to determine the strain history in the specimen gage section based on high speed video imaging. Detailed finite element analysis of the experimental set-up is performed to validate the design of the load inversion device. It is shown that under the assumption of perfect alignment and slip-free attachment of the specimen, the measured stress–strain curve is free from spurious oscillations at a strain rate of 1,000 s?1. Validation experiments are carried out using tensile specimens extracted from 1.4 thick TRIP780 steel sheets. The experimental results for uniaxial tension at strain rates ranging from 200 s?1 to 1,000 s?1 confirm the oscillation-free numerical results in an approximate manner. Dynamic tension experiments are also performed on notched specimens to illustrate the validity of the proposed experimental technique for characterizing the effect of strain rate on the onset of ductile fracture in sheet materials.  相似文献   

11.
This paper presents the heat transfer coefficients and the pressure drop measured during HFC-410A condensation inside a commercial brazed plate heat exchanger: the effects of saturation temperature, refrigerant mass flux and vapour super-heating are investigated. The heat transfer coefficients show weak sensitivity to saturation temperature and great sensitivity to refrigerant mass flux and vapour super-heating. At low refrigerant mass flux (<20 kg/m2 s) the saturated vapour condensation heat transfer coefficients are not dependent on mass flux and are well predicted by Nusselt [W. Nusselt, Die oberflachenkondensation des wasserdampfes, Energy 60 (1916) 541–546, 569–575] analysis for vertical surface: the condensation process is gravity controlled. For higher refrigerant mass flux (>20 kg/m2s) the saturated vapour condensation heat transfer coefficients depend on mass flux and are well predicted by Akers et al. [W.W. Akers, H.A. Deans, O.K. Crosser, Condensing heat transfer within horizontal tubes, Chem. Eng. Prog. Symp. Series 55 (1959) 171–176] equation: forced convection condensation occurs. In the forced convection condensation region the heat transfer coefficients show a 30% increase for a doubling of the refrigerant mass flux. The condensation heat transfer coefficients of super-heated vapour are 8–10% higher than those of saturated vapour and are well predicted by Webb [R.L. Webb, Convective condensation of superheated vapor, ASME J. Heat Transfer 120 (1998) 418–421] model. A simple linear equation based on the kinetic energy per unit volume of the refrigerant flow is proposed for the computation of the frictional pressure drop.  相似文献   

12.
The influence of strain rate and moisture content on the behaviour of a quartz sand was assessed using high-pressure quasi-static (10?3 s?1) and high-strain rate (103 s?1) experiments under uniaxial strain. Quasi-static compression to axial stresses of 800 MPa was carried out alongside split Hopkinson pressure bar (SHPB) experiments to 400 MPa, where in each case lateral deformation of the specimen was prevented using a steel test box or ring, and lateral stresses were recorded. A significant increase in constrained modulus was observed between strain rates of 10?3s?1 and 103s?1, however a consistently lower Poisson’s ratio in the dynamic tests minimised changes in bulk modulus. The reduction in Poissons ratio suggests that the stiffening of the sand in the SHPB tests is due to additional inertial confinement rather than an inherent strain-rate dependence. In the quasi-static tests the specimens behaved less stiffly with increasing moisture content, while in the dynamic tests the addition of water had little effect on the overall stiffness, causing the quasi-static and dynamic series to diverge with increasing moisture content.  相似文献   

13.
Capillary viscometry was performed on dilute non-Newtonian solutions of monodisperse polystyrene in theta solvents. The solvents, blends of low-molecular-weight polystyrene with styrene, had viscosities (ηs) that were varied from 0.22–27 Pa s. Data reduction of the dilute limit, [η]/[η0] vs. β = [η0sMγ?/RT (where γ? is shear rate) revealed a parametric dependence on ηs that has not before been reported and is not predicted by most molecular theories of polymer dynamics. It is suggested that an internal viscosity model can explain such a phenomenon.  相似文献   

14.
Two different shear sample geometries were employed to investigate the failure behaviour of two automotive alloy rolled sheets; a highly anisotropic magnesium alloy (ZEK100) and a relatively isotropic dual phase steel (DP780) at room temperature. The performance of the butterfly type specimen (Mohr and Henn Exp Mech 47:805–820, 16; Dunand and Mohr Eng Fract Mech 78:2919-2934, 17) was evaluated at quasi-static conditions along with that of the shear geometry of Peirs et al Exp Mech 52:729-741, (27) using in situ digital image correlation (DIC) strain measurement techniques. It was shown that both test geometries resulted in similar strain-paths; however, the fracture strains obtained using the butterfly specimen were lower for both alloys. It is demonstrated that ZEK100 exhibits strong anisotropy in terms of failure strain. In addition, the strain rate sensitivity of fracture for ZEK100 was studied in shear tests with strain rates from quasi-static (0.01 s?1) to elevated strain rates of 10 and 100 s?1, for which a reduction in fracture strain was observed with increasing strain rate.  相似文献   

15.
A model is developed for the study of mixed convection film condensation from downward flowing vapors onto a sphere with uniform wall heat flux. The model combined natural convection dominated and forced convection dominated film condensation, including effects of pressure gradient and interfacial vapor shear drag has been investigated and solved numerically. The separation angle of the condensate film layer, φ s is also obtained for various pressure gradient parameters, P * and their corresponding dimensionless Grashof?'s parameters, Gr *. Besides, the effect of P * on the dimensionless mean heat transfer, will remain almost uniform with increasing P * until for various corresponding available values of Gr *. Meanwhile, the dimensionless mean heat transfer, is increasing significantly with Gr * for its corresponding available values of P *. For pure natural-convection film condensation, is obtained.  相似文献   

16.
Tensile tests with simultaneous full-field strain and temperature measurements at the nominal strain rates of 0.01, 0.1, 1, 200 and 3000 s?1 are presented. Three different testing methods with specimens of the same thin and flat gage-section geometry are utilized. The full-field deformation is measured on one side of the specimen, using the DIC technique with low and high speed visible cameras, and the full-field temperature is measured on the opposite side using an IR camera. Austenitic stainless steel is used as the test material. The results show that a similar deformation pattern evolves at all strain rates with an initial uniform deformation up to the strain of 0.25–0.35, followed by necking with localized deformation with a maximum strain of 0.7–0.95. The strain rate in the necking regions can exceed three times the nominal strain rate. The duration of the tests vary from 57 s at the lowest strain rate to 197 μs at the highest strain rate. The results show temperature rise at all strain rates. The temperature rise increases with strain rate as the test duration shortens and there is less time for the heat to dissipate. At a strain rate of 0.01 s?1 the temperature rise is small (up to 48 °C) but noticeable. At a strain rate of 0.1 the temperature rises up to 140 °C and at a strain rate of 1 s?1 up to 260 °C. The temperature increase in the tests at strain rates of 200 s?1 and 3000 s?1 is nearly the same with the maximum temperature reaching 375 °C.  相似文献   

17.
Local strain and temperature of an AA5754-O aluminum alloy sheet have been full-field measured during monotonous tensile tests carried out at room temperature. Sharp strain increases and temperature bursts which are locally generated by the Portevin-Le Chatelier phenomenon have been measured at the same point for two strain rates: V2?=?1.9?×?10?3?s?1 and V10?=?9.7?×?10?3?s?1. A relationship, which is based on the underlying physical mechanisms, has been established between the strain and the temperature and experimentally verified for the highest strain rate V10. The discrepancy between the theoretical and experimental results for the lowest strain rate V2 suggests that the localized plastic deformations do not follow an adiabatic transformation. Such a set-up seems to offer a direct and experimental method to check the adiabatic character of localized plastic deformations.  相似文献   

18.
Viscoelastic solutions were ejected vertically downwards into air and various Newtonian fluids. The measured swell increased significantly when ejected into a liquid rather than air. The observed increase is considered a result of both bouyancy and drag forces on the solution. The following dimensions expression relating the ratio of the swell diameter in liquid and air DL/DA to the elastic shear compliance of the ejected solution Je was experimentally observed.(DL/DA)6-1=30(Δ?/?s)?12([g2η2N?s]13Je)35, where Δ? is the density difference between the extruded and Newtonian fluid, ?s is the solution density, g is the gravitational constant, and ηN is the Newtonian fluid viscosity. Thus with this expression a simple extrudate swell technique exists to estimate the elastic shear compliance of a viscoelastic solution.  相似文献   

19.
A computational fluid dynamics (CFD) model of the pyrolysis of a Loy Yang low-rank coal in a pressurised drop tube furnace (pdtf) was undertaken evaluating Arrhenius reaction rate constants. The paper also presents predictions of an isothermal flow through the drop tube furnace. In this study, a pdtf reactor operated at pressures up to 15 bar and at a temperature of 1,173 K with particle heating rates of approximately 105 K s?1 was used. The CFD model consists of two geometrical sections; flow straightner and injector. The single reaction and two competing reaction models were employed for this numerical investigation of the pyrolysis process. The results are validated against the available experimental data in terms of velocity profiles for the drop tube furnace and the particle mass loss versus particle residence times. The isothermal flow results showed reasonable agreement with the available experimental data at different locations from the injector tip. The predicted results of both the single reaction and competing reaction modes showed slightly different results. In addition, several reaction rate constants were tested and validated against the available experimental data. The most accurate results were being Badzioch and Hawksley (Ind Eng Chem Process Des Dev 9:521–530, 1970) with a single reaction model and Ubhayakar et al. (Symp (Int) Combust 16:427–436, 1977) for two competing reactions. These numerical results can provide useful information towards future modelling of the behaviour of Loy Yang coal in a full scale tangentially-fired furnace.  相似文献   

20.
We give simple proofs that a weak solution u of the Navier–Stokes equations with H 1 initial data remains strong on the time interval [0, T] if it satisfies the Prodi–Serrin type condition uL s (0, T;L r,∞(Ω)) or if its L s,∞(0, T;L r,∞(Ω)) norm is sufficiently small, where 3 < r ≤ ∞ and (3/r) + (2/s) = 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号