首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The numerical investigation of the two-dimensional laminar flow past two ro- tating circular cylinders in the tandem arrangement is conducted by the lattice Boltzmann method. The numerical strategy is used for dealing with curved and moving boundaries of the second-order accuracy for velocity and temperature fields. The effects of various rotational speed ratios and gap spacing are studied with the Reynolds number of 100 and the Prandtl number of 0.71. A varied range of rotational speed ratios are investigated for four different gap spacing, i.e., 3.0, 1.5, 0.7, and 0.2. The results show that, for the first cylinder, the lift and drag coefficients for large gap spacing are similar to those for a single cylinder; for the second cylinder, the lift coefficient descends with the increase in the angular velocity for all gap spacing, while the drag coefficient ascends except for the gap spacing of 3.0. The results of the averaged periodic Nusselt number on the surface of the cylinders show that, for small distances between the cylinders and low angular velocities, conduction is a dominant mechanism of heat transfer, but for large distances and high angular velocities, convection is the main mechanism of heat transfer.  相似文献   

2.
Detailed quantitative maps of the heat transfer distribution in a square channel with angled rib turbulators are measured by means of infrared (IR) thermography associated with the heated-thin-foil technique. Air flows in the channel where square ribs are mounted on two opposite walls at an angle of either 30° or 45° with respect to the duct axis. Two rib pitches, two different rib arrangements and two heating conditions are investigated. Results are presented in terms of local and averaged Nusselt numbers, which are normalised with the classical Dittus and Boelter correlation, for three different Reynolds numbers.  相似文献   

3.
 The problem of fully developed free convection two fluid magnetohydrodynamic flow in an inclined channel is investigated. The governing momentum and energy equations are coupled and highly nonlinear due to dissipation terms, solutions are found employing perturbation technique for small values of Pr · Ec (=ɛ) the product of Prandtl number and Eckert number. Effects of Grashof number, Hartmann number, inclination angle, the ratios of electrical conductivities, viscosities and heights of two fluids on the flow are explored. It is observed that the flow can be controlled effectively by suitable adjustment of the values for the ratios of heights, electrical conductivities and viscosities of the two fluids. Received on 10 December 1999  相似文献   

4.
The problem of convection in a plane horizontal layer of incompressible fluid with rigid boundaries when the temperature is constant on the lower boundary and has a parabolic profile on the upper boundary can be reduced to solution of a system of time-dependent one-dimensional equations. An analytic solution of the problem is obtained directly at the extremum point. Together with the wellknown solutions which describe heat transfer for the linear temperature distribution on the boundaries, the results obtained make it possible to calculate the heat flux through a thin slit for an arbitrary given heating of a thin fluid layer between heat-conducting bodies.  相似文献   

5.
The paper proposes a theoretical model for the study of flow and heat transfer in a parallel plate channel, one of whose walls is lined with non-erodible porous material, both the walls being kept at constant temperatures. The analysis uses Brinkman model in the porous medium and employs the velocity and temperature slips at the interface (the so called nominal surface). The influence of the thickness as well as the permeability of the porous medium on the flow field and Nusselt numbers at the walls is investigated.
Konvektive Wärmeübertragung in einem Parallelplattenkanal mit porösem Überzug
Zusammenfassung Die vorliegende Arbeit befaßt sich mit dem Vorschlag eines theoretischen Modells, um die Wärmeübertragung in einem Parallelplattenkanal mit unauswaschbarem porösem Überzug zu studieren. Die Strömung innerhalb des porösen Überzugs ist mit Hilfe der Brinkmannschen Gleichung analysiert. An der Grenze (der sogenannten Nominalfläche) zwischen dem Überzug und der freien Strömung sind die Geschwindigkeitsgleitung und die Temperaturgleitung benutzt. Die Beeinflussung des Geschwindigkeitsfelds und die Nusseltschen Zahlen an den Wänden in Abhängigkeit von der Dicke und der Durchlässigkeit des porösen Überzugs ist untersucht.

Nomenclature u streamwise velocity in Zone 1 (Fig. 1) - û streamwise velocity in Zone 2 (Fig. 1) - p pressure - coefficient of viscosity of the fluid - k absolute permeability of the material used for lining - density of the fluid - R Reynolds number - the average velocity in Zone 1 (Fig. 1) - T temperature in Zone 1 (Fig. 1) - T temperature in Zone 2 (Fig. 1) - K thermal conductivity in Zones 1 and 2 (Fig. 1) - M 1 non-dimensional mass flow rate in Zone 1 (Fig. 1) - M 2 non-dimensional mass flow rate in Zone 2 (Fig. 1) - (Nu)U Nusselt number at the upper plate (Fig. 1) - (Nu) L Nusselt number at the lower plate (Fig. 1) - E experimental value of the temperature in the channel (with porous lining) at a specified point - E/* experimental value of the temperature in the channel (without porous lining) at a specified point  相似文献   

6.
In this paper, a large eddy simulation based on the lattice Boltzmann framework is carried out to simulate the heat transfer in a turbulent channel flow, in which the temperature can be regarded as a passive scalar. A double multiple relaxation time (DMRT) thermal lattice Boltzmann model is employed. While applying DMRT, a multiple relaxation time D3Q19 model is used to simulate the flow field, and a multiple relaxation time D3Q7 model is used to simulate the temperature field. The dynamic subgrid stress model, in which the turbulent eddy viscosity and the turbulent Prandtl number are dynamically computed, is integrated to describe the subgrid effect. Not only the strain rate but also the temperature gradient is calculated locally by the non-equilibrium moments. The Reynolds number based on the shear velocity and channel half height is 180. The molecular Prandtl numbers are set to be 0.025 and 0.71. Statistical quantities, such as the average velocity, average temperature, Reynolds stress, root mean square (RMS) velocity fluctuations, RMS temperature and turbulent heat flux are obtained and compared with the available data. The results demonstrate great reliability of DMRT–LES in studying turbulence.  相似文献   

7.
In this paper, a large eddy simulation based on the lattice Boltzmann framework is carried out to simulate the heat transfer in a turbulent channel flow, in which the temperature can be regarded as a passive scalar. A double multiple relaxation time (DMRT) thermal lattice Boltzmann model is employed. While applying DMRT, a multiple relaxation time D3Q19 model is used to simulate the flow field, and a multiple relaxation time D3Q7 model is used to simulate the temperature field. The dynamic subgrid stress model, in which the turbulent eddy viscosity and the turbulent Prandtl number are dynamically computed, is integrated to describe the subgrid effect. Not only the strain rate but also the temperature gradient is calculated locally by the non-equilibrium moments. The Reynolds number based on the shear velocity and channel half height is 180. The molecular Prandtl numbers are set to be 0.025 and 0.71. Statistical quantities, such as the average velocity, average temperature, Reynolds stress, root mean square (RMS) velocity fluctuations, RMS temperature and turbulent heat flux are obtained and compared with the available data. The results demonstrate great reliability of DMRT–LES in studying turbulence.  相似文献   

8.
This work experimentally studies the flow characteristics and forced convective heat transfer in a sintered porous channel that filled with sintered copper beads of three average diameters ( 0.830, and 1.163 mm). The pressure drop and the local temperature measurements can be applied to figure out the distributions of the friction coefficient and the heat transfer coefficient. Three sintered porous channels differ in the arrangement of obstacle blocks. Model A has no obstacle. Models B and C have five obstacle blocks facing down and up, respectively, in a sintered porous channel. The range of experimental parameters, porosity, heat flux, and effect of forced convection are 0.370 ≤ ɛ ≤ 0.385, q=0.228, 0.872, 1.862 W/cm2, and 200 ≤ Re d ≤ 800. The permeability and inertia coefficient of each of the three sintered porous channels are analyzed. The results for Model A agree with those obtained by previous investigations in C f distribution. The heat transfer of Model C exceeds that of Model A by approximately 20%. Finally, a series of empirical correlation equations were obtained for practical applications and engineering problems.  相似文献   

9.
The Super-Critical Water-Cooled Reactor (SCWR) has been chosen by the Generation IV International Forum as one of the candidates for the next generation nuclear reactors. Heat transfer to water from a fuel assembly may deteriorate at certain supercritical pressure flow conditions and its estimation at degraded conditions as well as in normal conditions is very important to the design of a safe and reliable reactor core. Extensive experiments on a heat transfer to a vertically upward flowing CO2 at a supercritical pressure in tubes and an annular channel have been performed. The geometries of the test sections include tubes of an internal diameter (ID) of 4.4 and 9.0 mm and an annular channel (8 × 10 mm). The heat transfer coefficient (HTC) and Nusselt numbers were derived from the inner wall temperature converted by using the outer wall temperature measured by adhesive K-type thermocouples and a direct (tube) or indirect (annular channel) electric heating power. From the test results, a correlation, which covers both a deteriorated and a normal heat transfer regime, was developed. The developed correlation takes different forms in each interval divided by the value of parameter Bu. The parameter Bu (referred to as Bu hereafter), a function of the Grashof number, the Reynolds number and the Prandtl number, was introduced since it is known to be a controlling factor for the occurrence of a heat transfer deterioration due to a buoyancy effect. The developed correlation predicted the HTCs for water and HCFC-22 fairly well.  相似文献   

10.
Unsteady momentum and heat transfer from an asymmetrically confined circular cylinder in a plane channel is numerically investigated using FLUENT for the ranges of Reynolds numbers as 10≤Re≤500, of the blockage ratio as 0.1≤β≤0.4, and of the gap ratio as 0.125≤γ≤1 for a constant value of the Prandtl number of 0.744. The transition of the flow from steady to unsteady (characterized by critical Re) is determined as a function of γ and β. The effect of γ on the mean drag and lift coefficients, Strouhal number (St), and Nusselt number (Nu w ) is studied. Critical Re was found to increase with decreasing γ for all values of β. and St were found to increase with decreasing values of γ for fixed β and Re. The effect of decrease in γ on was found to be negligible for all blockage ratios investigated.  相似文献   

11.
In this study, a numerical simulation of copper microchannel heatsink (MCHS) using nanofluids as coolants is presented. The nanofluid is a mixture of pure water and nanoscale metallic or nonmetallic particles with various volume fractions. Also, the effects of various volume fractions, volumetric flow rate and various materials of nanoparticles on the performance of MCHS have been developed. A three-dimensional computational fluid dynamics model was developed using the commercial software package FLUENT, to investigate the conjugate fluid flow and heat transfer phenomena in micro channel heatsinks. The results show that the cooling performance of a microchannel heat sink with water based nanofluid containing Al2O3 (vol 8%) is enhanced by about 4.5% compared with micro channel heatsink with pure water. Nanofluids reduce both the thermal resistance and the temperature difference between the top (heated) surface of the MCHS and inlet nanofluid compared with that pure water. The cooling performance of a micro channel heat sink with metal nanofluids improves compared with that of a micro channel heat sink with oxide metal nanofluids because the thermal conductivity of metal nanofluid is higher than oxide metal nanofluids. Micro channel heat sinks with nanofluids are expected to be good candidates as the next generation cooling devices for removing ultra high heat flux.  相似文献   

12.
13.
A numerical study of forced convection enhancement in a channel intermittently heated is presented in this work. The use of porous blocks mounted on the heated parts of the channel to improve thermal performance is investigated. In order to account for the inertia, drag and boundary effects, the Brinkman-Forchheimer-extended Darcy model is adopted for the flow inside the porous regions. The effects of several parameters such as Darcy number, the block dimensions, the number of blocks and the thermal conductivity ratio are documented. The results show that the blocks may alter substantially the flow pattern depending on the permeability of the porous medium, and may improve the heat transfer and reduce the wall temperature under certain circumstances. Received on 9 June 1997  相似文献   

14.
15.
The current study addresses the mathematical modeling aspects of coupled conductive and radiative heat transfer in presence of absorbing, emitting and isotropic scattering gray medium within two-dimensional square enclosure. The walls of the enclosure are considered to be opaque, diffuse and gray. The enclosure comprised of isothermal vertical walls and insulated horizontal walls. A new hybrid method where the concepts of modified differential approximation employed by blending discrete ordinate method and spherical harmonics method, has been developed for modeling the radiative transport equation. The finite volume method has been adopted as the numerical technique. The effect of various influencing parameters i.e., radiation-conduction parameter, surface emissivity, single scattering albedo and optical thickness has been illustrated. The compatibility of the method with regard to solving coupled conduction and radiation has also been addressed.  相似文献   

16.
In this paper, fully developed convective heat transfer of viscoelastic flow in a curved pipe under the constant heat flux at the wall is investigated analytically using a perturbation method. Here, the curvature ratio is used as the perturbation parameter and the Oldroyd-B model is applied as the constitutive equation. In the previous studies, the Dirichlet boundary condition for the temperature at the wall has been used to simplify the solution, but here exactly the non-homogenous Neumann boundary condition is considered to solve the problem. Based on this solution, the non-axisymmetric temperature distribution of Dean flow is obtained analytically and the effect of flow parameters on the flow field is investigated in detail. The current analytical results indicate that increasing the Weissenberg number, viscosity ratio, curvature ratio, and Prandtl number lead to the increase of the heat transfer in the Oldroyd-B fluid flow.  相似文献   

17.
This paper presents a new predictive model of droplet flow and heat transfer from molten salt droplets in a direct contact heat exchanger. The process is designed to recover heat from molten CuCl in a thermochemical copper–chlorine (Cu–Cl) cycle of hydrogen production. This heat recovery occurs through the physical interaction between high temperature CuCl droplets and air. Convective heat transfer between droplets and air is analyzed in a counter-current spray flow heat exchanger. Numerical results for the variations of temperature, velocity and heat transfer rate are presented for two cases of CuCl flow. The optimal dimensions of the heat exchanger are found to be a diameter of 0.13 m, with a height of 0.6 and 0.8 m, for 1 and 0.5 mm droplet diameters, respectively. Additional results are presented and discussed for the heat transfer effectiveness and droplet solidification during heat recovery from the molten CuCl droplets.  相似文献   

18.
19.
A new computation method is presented for the accurate determination of temperature fields and heat transfer characteristics for steady forced convection flow in coolant channels with an arbitrary prescribed wall heat flux. The essential feature of this method is that the fluid region is discretized in the section normal to the flow direction. Energy balances set up for each of the elements yield a system of linear first order differential equations with as a sole independent variable an axial distance parameter. This system of equations is solved analytically using a matrix method. The method is illustrated for the case of laminar flow in flat and circular ducts.  相似文献   

20.
A numerical analysis is made of incompressible transient turbulent flow heat transfer between two parallel plates when there is a step jump in space along the channel in wall heat flux or wall temperature. The variation of the fluid velocity and effective diffusivity over the channel cross section are accounted for. The fluid is assumed to have a fully-developed turbulent velocity profile throughout the length of the channel. The thermal responses of the system are obtained by solving energy equation for air by a digital computer. The results are presented in graphical forms. The stability of the finite difference solution is studied and condition for the stability of the difference solution is derived. A method is given to obtain velocity distributions from the distribution of turbulent eddy diffusivity of momentum. Variations of Nusselt numbers are obtained as a function of time and space. Steady-state values are also given and compared with the published results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号