首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
A novel tandem time-of-flight (TOF) mass spectrometer has been developed for studying the photo-induced dissociation of large molecules and elemental clusters. It consists of a linear first stage TOF analyser for primary mass separation and precursor ion selection, and a second orthogonal reflecting field TOF analyser for product ion analysis. The instrument is equipped with a large volume throughput molecular beam source chamber allowing the production of jet-cooled molecules and molecular clusters, as well as elemental clusters, using either a pulsed laser vaporisation source (LVS) or a pulsed are cluster ion source (PACIS). A second differentially pumped chamber can be used with effusive sources, or for infrared laser desorption of large molecules, followed by laser ionisation. These primary ions can then be irradiated with a second, high energy laser to induce photodissociation. Detailed information about the fragmentation mechanisms can be deduced from the product ion mass spectra. Preliminary results on the photo-induced dissociation (PID) of the molecule ion of aniline at 266 nm are presented. In this case the molecule ions were generated via two-photon laser ionisation at 266 nm using an effusive source. Results for the collision-induced dissociation (CID) of the aniline molecule ion, using a commercial mass spectrometer equipped with an atmospheric pressure electrospray ionisation interface, are also presented. Copyright 2000 John Wiley & Sons, Ltd.  相似文献   

2.
Femtosecond laser time-of-flight mass spectra of solid samples of trinitrobenzene (TNB), trinitrotoluene (TNT) and trinitrophenol (TNP) have been recorded. Desorption of the solid samples was enacted by the fourth harmonic output (266 nm) of a 5 ns Nd:YAG laser. Subsequent femtosecond post-ionisation of the plume of neutral molecules was achieved using 800 nm laser pulses of 80 fs duration. Mass spectra have been recorded for desorption laser intensities from 2-6 x 10(9) W cm(-2) with ionisation laser intensities between 2 x 10(14) and 6 x 10(15) W cm(-2). Femtosecond laser ionisation has been shown to be capable of generating precursor and characteristic high-mass fragment ions for labile nitro-aromatic molecules commonly used in high-explosive materials. This feature is critical in the future development of femtosecond laser-based analytical instruments that can be used for complex molecular identification and quantitative analysis of environmentally important labile molecules. Furthermore, a comparison of femtosecond post-ionisation mass spectra with standard 70 eV electron impact data has revealed similarities in the spectra and hence the fragmentation processes.  相似文献   

3.
Mass spectrometry (MS) with soft ionisation techniques (i.e. ionisation without fragmentation of the analyte molecules) for gaseous samples exhibits interesting analytical properties for direct analysis applications (i.e. direct inlet mass spectrometric on-line monitoring) as well as mass spectrometric detection method for gas chromatography (GC-MS). Commonly either chemical ionisation (CI) or field ionisation (FI) is applied as soft ionisation technology for GC-MS. An interesting alternative to the CI and FI technologies methods are photo-ionisation (PI) methods. PI overcomes some of the limitations of CI and FI and furthermore add some unique analytical properties. The resonance enhanced multi-photon ionisation (REMPI) method uses intense UV-laser pulses (wavelength range approximately 350-193 nm) for highly selective, sensitive and soft ionisation of predominately aromatic compounds. The single photon ionisation (SPI) method utilises VUV light (from lamps or laser sources, wavelengths range approximately 150-110 nm) can be used for a universal soft ionisation of organic molecules. In this article the historical development as well as the current status and concepts of gas chromatography hyphenated to photo-ionisation mass spectrometry are reviewed.  相似文献   

4.
The authors compared circularly and linearly polarized lights in the ionization and fragmentation of anthracene, using 800 nm femtosecond laser pulses at intensities of 10(13)-10(15) W cm-2. Singly and doubly charged intact molecular ions as well as numerous fragment ions were observed in the mass spectra, which were investigated as a function of laser intensity and polarization. At comparable intensities above the saturation threshold for complete ionization, the fragmentation pathways are enhanced with a circularly polarized field compared to a linearly polarized field. Resonant excitation of the molecular cation through the 2Au<--2Bg transition is proposed to be the initial step to ion fragmentation. The circularly polarized field interacts with a larger fraction of the randomly oriented molecules than the linearly polarized field, and this is considered to be the reason for the enhanced fragmentation brought about by circularly polarized light.  相似文献   

5.
The photoionization of seeded benzene beam by 25 ns laser pulse at wavelengths of 266,355 and 1064 nm has been studied by the time-of-flight mass spectrometry. The observed mass spectra at 266 nm and 355 nm at intensities of 1010-1011 W/cm2 indicate a multiphoton ionization and dissociation(MPID)process,in which C+,C2Hx+,C3Hx+,C4Hx+ and C6H6+ are main products. While at 1064 nm laser of similar intensities,the domain ion is C4+ which is produced from Coulomb explosion. The longer wavelength facilities the energy absorption rate during inverse bremsstrahlung,which leads to the resulting wavelength dependence of the multicharged atomic ions.  相似文献   

6.
Decomposition of electronically excited nitro-containing molecules with different X-NO(2) (X = C, N, O) moieties has been intensively investigated over the past decades; however, their decomposition behavior has not previously been compared and contrasted. Comparison of their unimolecular decomposition behavior is important for the understanding of the reactivity differences among electronically excited nitro-containing molecules with different X-NO(2) (X = C, N, O) bond connections. Nitromethane (NM), dimethylnitramine (DMNA), and isopropylnitrate (IPN) are used as model molecules for C-NO(2), N-NO(2), and O-NO(2) active moieties, respectively. Ultraviolet lasers at different wavelengths, such as 226, 236, and 193 nm, have been employed to prepare the excited states of these molecules. The decomposition products are then detected by resonance enhanced two photon ionization (R2PI), laser induced fluorescence (LIF) techniques, or single photon ionization at 10.5 eV. NO molecules are observed to be the major decomposition product from electronically excited NM, DMNA, IPN using R2PI techniques. The NO products from decomposition of electronically excited (226 and 236 nm) NM and IPN display similar rotational (600 K) and vibrational distributions [both (0-0) and (0-1) bands of the NO molecule are observed]. The NO product from DMNA shows rotational (120 K) and vibrational distributions (only (0-0) transition is observed) colder than those of NM and IPN. At the 193 nm excitation, electronically excited NO(2) products are observed from NM and IPN via fluorescence detection, while no electronically excited NO(2) products are observed from DMNA. Additionally, the OH radical is observed as a minor dissociation product from all three compounds. The major decomposition pathway of electronically excited NM and IPN involves fission of the X-NO(2) bond to form electronically excited NO(2) product, which further dissociates to generate NO. The production of NO molecules from electronically excited DMNA is proposed to go through a nitro-nitrite isomerization pathway. Theoretical calculations show that a nitro-nitrite isomerization for DMNA occurs on the S(1) surface following a (S(2)/S(1))(CI) conical intersection (CI), whereas NO(2) elimination occurs on the S(1) surface following the (S(2)/S(1))(CI) conical intersection for NM and IPN. The present work provides insights for the understanding of the initiation of the decomposition of electronically excited X-NO(2) energetic systems. The presence of conical intersections along the reaction coordinate plays an important role in the detailed mechanism for the decomposition of these energetic systems.  相似文献   

7.
The 266 nm nanosecond laser photolysis of various purine and pyrimidine derivatives results in their photoionization (PI) as one of the primary photochemical pathways. Electron photoejection occurs through a combination of one- and two-photon mechanisms. The PI values depend on the substituents attached to the chromophore of the base. The net PI of the purine bases at 266 nm are of the same order of magnitude (10(-2)) as those of the pyrimidine bases under similar experimental conditions. The monophotonic component is approximately one-third of the net PI yield of the bases. A nonrelaxed singlet excited state intermediate is tentatively proposed for this pathway. It is proposed that this state is significantly stabilized by water solvation, transforming it into a charge transfer to solvent state from which the hydrated electron evolves.  相似文献   

8.
A simple method to generate and characterize a pure highly vibrationally excited azulene molecular beam is demonstrated. Azulene molecules initially excited to the S4 state by 266-nm UV photons reach high vibrationally excited levels of the ground electronic state upon rapid internal conversion from the S4 electronically excited state. VUV laser beams at 157 and 118 nm, respectively, are used to characterize the relative concentrations of the highly vibrationally excited azulene and the rotationally and vibrationally cooled azulene in the molecular beam. With a laser intensity of 34 mJ/cm2, 75% of azulene molecules absorb a single 266-nm photon and become highly vibrationally excited molecules. The remaining ground-state azulene molecules absorb two or more UV photons, ending up either as molecular cations, which are repelled out of the beam by an electric field, or as dissociation fragments, which veer off the molecular-beam axis. No azulene without absorption of UV photons is left in the molecular beam. The molecular beam that contains only highly vibrationally excited molecules and carrier gas is useful in various experiments related to the studies of highly vibrationally excited molecules.  相似文献   

9.
The fragmentation dynamics of indole molecules following excitation at 193.3 nm, and at a number of different wavelengths in the range 240 < or = lambda(phot) < or = 286 nm, have been investigated by H Rydberg atom photofragment translational spectroscopy. The longer wavelength measurements have been complemented by measurements of excitation spectra for forming parent and fragment ions by two (or more) photon ionisation processes. Analysis identifies at least three distinct contributions to the observed H atom yield, two of which are attributable to dissociation of indole following radiationless transfer from the 1pi pi* excited states (traditionally labelled 1L(b) and 1L(a)) prepared by UV single photon absorption. The structured channel evident in total kinetic energy release (TKER) spectra recorded at lambda(phot) < or = 263 nm is rationalised in terms of N-H bond fission following initial pi* <-- pi excitation and subsequent coupling to the 1pi sigma* potential energy surface via a conical intersection between the respective surfaces--thereby validating recent theoretical predictions regarding the importance of this process (Sobolewski et al., Phys. Chem. Chem. Phys., 2002, 4, 1093). Analysis provides an upper limit for the N-H bond strength in indole: D0(H-indolyl) < or = 31,900 cm(-1). Unimolecular decay of highly vibrationally excited ground state molecules formed by internal conversion from the initially prepared 1pi pi* states is a source of (slow) H atoms but their contribution to the TKER spectra measured in the present work is dwarfed by that from H atoms generated by one or more (unintended but unavoidable) multiphoton processes.  相似文献   

10.
The influence of substituents on the resonance Raman spectra of bis(p-substituted dithiobenzil)nickels has been examined. The assigned sulfur—nickel stretching vibrations in the complexes appeared in the range 390–410 cm−1 with a shift to higher frequency being observed for the electron-donating substituent. It was found that Raman intensities at vibrations of the benzene ring for ligands excited with a 457.9 nm laser line are about 1.5–3.0 times larger than with a 514.5 nm laser line. The assignments of electronic transitions in the visible region of the nickel complexes were made on the basis of observed resonance Raman intensity patterns.  相似文献   

11.
Photo-ionisation and -fragmentation ofC 60 by 15 ns excimer laser pulses at 308 nm and 193 nm as well as 0.8 ps laser pulses at 193 nm has been studied with reflectron time-of-flight mass spectrometry. The initial fragmentation process is ejection ofC n,n>2, as opposed to successiveC 2 evaporation. Studies of the relative intensities of metastable fragmentation processes compared with direct fragmentation provide new insight into the fragmentation mechanism and provide a thermometer for the internal energy ofC 60 + prior to fragmentation. The proposed mechanism is in agreement with measurements of the fragment ion kinetic energies. The results are compared with molecular dynamics simulations.  相似文献   

12.
The multiphoton multichannel photodynamics of NO(2) has been studied using femtosecond time-resolved coincidence imaging. A novel photoelectron-photoion coincidence imaging machine was developed at the laboratory in Amsterdam employing velocity map imaging and "slow" charged particle extraction using additional electron and ion optics. The NO(2) photodynamics was studied using a two color pump-probe scheme with femtosecond pulses at 400 and 266 nm. The multiphoton excitation produces both NO(2) (+) parent ions and NO(+) fragment ions. Here we mainly present the time dependent photoelectron images in coincidence with NO(2) (+) or NO(+) and the (NO(+),e) photoelectron versus fragment ion kinetic energy correlations. The coincidence photoelectron spectra and the correlated energy distributions make it possible to assign the different dissociation pathways involved. Nonadiabatic dynamics between the ground state and the A (2)B(2) state after absorption of a 400 nm photon is reflected in the transient photoelectron spectrum of the NO(2) (+) parent ion. Furthermore, Rydberg states are believed to be used as "stepping" states responsible for the rather narrow and well-separated photoelectron spectra in the NO(2) (+) parent ion. Slow statistical and fast direct fragmentation of NO(2) (+) after prompt photoelectron ejection is observed leading to formation of NO(+)+O. Fragmentation from both the ground state and the electronically excited a (3)B(2) and b (3)A(2) states of NO(2) (+) is observed. At short pump probe delay times, the dominant multiphoton pathway for NO(+) formation is a 3x400 nm+1x266 nm excitation. At long delay times (>500 fs) two multiphoton pathways are observed. The dominant pathway is a 1x400 nm+2x266 nm photon excitation giving rise to very slow electrons and ions. A second pathway is a 3x400 nm photon absorption to NO(2) Rydberg states followed by dissociation toward neutral electronically and vibrationally excited NO(A (2)Sigma,v=1) fragments, ionized by one 266 nm photon absorption. As is shown in the present study, even though the pump-probe transients are rather featureless the photoelectron-photoion coincidence images show a complex time varying dynamics in NO(2). We present the potential of our novel coincidence imaging machine to unravel in unprecedented detail the various competing pathways in femtosecond time-resolved multichannel multiphoton dynamics of molecules.  相似文献   

13.
Wavelength-dependent effects in the resonance-enhanced multiphoton ionization/fragmentation mass spectra of p-chloroaniline and diphenyl ether are presented. For both molecules, the formation of low-energy fragments can be discriminated against in favor of higher-energy fragments by using ‘low’-energy radiation (290 nm region) for ionization/fragmentation. The same low-energy fragments become dominant when higher-energy radiation (266 nm) is used. This unique behavior is explained in terms of the narrow distribution of parent ion internal energies created through resonance-enhanced multiphoton ionization/fragmentation and the competing kinetic processes accessed by the parent ion as it absorbs each successive photon.  相似文献   

14.
瞬态吸收光谱研究苯与H2O2水溶液的反应机理   总被引:4,自引:1,他引:4  
利用瞬态吸收光谱技术研究了不同条件下苯与H2O2水溶液复相体系的激光闪光光解情况,考察了其瞬态物种的生长和衰减等行为.研究表明, •OH自由基和苯反应生成C6H6-OH加合物,其反应速率常数在近中性和酸性条件下分别为(8.0~8.1)×109 L•mol-1•s-1和7.7×109 L•mol-1•s-1, 而在碱性时则为(6.7~6.9)×109 L•mol-1•s-1,在有氧条件下C6H6-OH加合物被氧化为C6H6-OHO2后,进一步分解成对苯醌;C6H6-OH加合物和激发态的苯也可直接与H2O2反应生成对苯醌,三种反应途径同时存在.  相似文献   

15.
The photodissociation dynamics of 2,5-dimethylpyrrole (2,5-DMP) has been investigated following excitation at 193.3 nm and at many near ultraviolet (UV) wavelengths in the range 244 < lambda(phot) < 282 nm using H Rydberg atom photofragment translational spectroscopy (PTS). Complementary UV absorption and, at the longest excitation wavelengths, one photon resonant multiphoton ionisation spectra of 2,5-DMP are reported also; analysis of the latter highlights the role of methyl torsional motions in promoting the parent absorption. The deduced fragmentation dynamics show parallels with that reported recently (B. Cronin, M. G. D. Nix, R. H. Qadiri and M. N. R. Ashfold, Phys. Chem. Chem. Phys., 2004, 6, 5031) for the bare pyrrole molecule. Excitation at the longer wavelengths leads to (vibronically induced) population of the 1(1)A(2)(pisigma*) excited state of 2,5-DMP, but once lambda(phot) decreases to approximately 250 nm stronger, dipole allowed transitions start to become apparent in the parent absorption. All total kinetic energy release (TKER) spectra of the H + 2,5-dimethylpyrrolyl (2,5-DMPyl) fragments measured at lambda(phot)> or=244 nm show a structured fast component, many of which are dominated by a peak with TKER approximately 5100 cm(-1); analysis of this structure reveals lambda(phot) dependent population of selected vibrational levels of 2,5-DMPyl, and enables determination of the N-H bond strength in 2,5-DMP: D(0) = 30 530 +/- 100 cm(-1). Two classes of behaviour are proposed to account for details of the observed energy partitioning. Both assume that N-H bond fission involves passage over (or tunnelling through) a small exit channel barrier on the 1(1)A(2) potential energy surface, but differ according to the vibrational energy content of the photo-prepared molecules. Specific parent out-of-plane skeletal modes that promote the 1(1)A(2)-X(1)A(1) absorption appear to evolve adiabatically into the corresponding vibrations of the 2,5-DMPyl products. Methyl torsions can also promote the 1(1)A(2)<-- X(1)A(1) absorption in 2,5-DMP, and provide a means of populating a much higher density of excited vibrational levels than in pyrrole. Such excited levels are deduced to dissociate by redistributing the minimum amount of internal energy necessary to overcome the exit channel barrier in the N-H dissociation coordinate. Coupling with the ground state surface via a conical intersection at extended N-H bond lengths is proposed as a further mechanism for modest translational --> vibrational energy transfer within the separating products. The parent absorption cross-section increases considerably at wavelengths approximately 250 nm, and PTS spectra recorded at lambda(phot)< or = 254 nm display a second, unstructured, peak at lower TKER. As in pyrrole, this slower component is attributed to H atoms from the unimolecular decay of highly vibrationally excited ground state molecules formed via radiationless decay from photo-excited states lying above the 1(1)A(2) state.  相似文献   

16.
Multiphoton excitation of CS2 by means of a frequency-narrowed tunable KrF laser (248 nm) leads to ionisation and photofragment fluorescence from CS(A 1Π) and CS(d3Δ). Emission spectra can be obtained without any interference from the strong laser-induced flourescence from CS(X1Σ+) observed in previous work with broad-band KrF laser. Excitation and fragmentation mechanisms are discussed within the context of higher Rydberg states of CS2.  相似文献   

17.
An ultraviolet absorption technique is developed for studying molecules cooled in a supersonic expansion. In this experiment, the temperature-dependent contribution to the diffuseness of electronically excited states is reduced for CS2 and butadiene. The broadness of the spectral features of the butadiene 1B1u state is independent of temperature  相似文献   

18.
Analysis of grapevine phytoalexins at the surface of Vitis vinifera leaves has been achieved by laser desorption/ionisation time‐of‐flight mass spectrometry (LDI‐ToFMS) without matrix deposition. This simple and rapid sampling method was successfully applied to map small organic compounds at the surface of grapevine leaves. It was also demonstrated that the laser wavelength is a highly critical parameter. Both 266 and 337 nm laser wavelengths were used but the 266 nm wavelength gave increased spatial resolution and better sensitivity for the detection of the targeted metabolites (resveratrol and linked stilbene compounds). Mass spectrometry imaging of grapevine Cabernet Sauvignon leaves revealed specific locations with respect to Plasmopara viticola pathogen infection or light illumination. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
The combination of remote/standoff sensing and laser-induced fluorescence (LIF) spectroscopy shows potential for detection of uranyl (UO2(2+)) compounds. Uranyl compounds exhibit characteristic emission in the 450-600 nm (22,200 to 16,700 cm(-1)) spectral region when excited by wavelengths in the ultraviolet or in the short-wavelength portion of the visible spectrum. We report a parametric study of the effects of excitation wavelength [including 532 nm (18,797 cm(-1)), 355 nm (28,169 cm(-1)), and 266 nm (37,594 cm(-1))] and excitation laser power on solid-state uranium compounds. The uranium compounds investigated include uranyl nitrate, uranyl sulfate, uranyl oxalate, uranium dioxide, triuranium octaoxide, uranyl acetate, uranyl formate, zinc uranyl acetate, and uranyl phosphate. We observed the characteristic uranyl fluorescence spectrum from the uranium compounds except for uranium oxide compounds (which do not contain the uranyl moiety) and for uranyl formate, which has a low fluorescence quantum yield. Relative uranyl fluorescence intensity is greatest for 355 nm excitation, and the order of decreasing fluorescence intensity with excitation wavelength (relative intensity/laser output) is 355 nm > 266 nm > 532 nm. For 532 nm excitation, the emission spectrum is produced by two-photon excitation. Uranyl fluorescence intensity increases linearly with increasing laser power, but the rate of fluorescence intensity increase is different for different emission bands.  相似文献   

20.
We report a nanosecond laser study of the transient absorption of hydrated electrons generated by multiphoton ionisation of liquid water upon excitation at 266 and 400 nm by femtosecond pulses with power densities higher than 1 TW/cm2. For both wavelengths, as the pump power density increases, the signal amplitude increases and the decay becomes faster proving that more electrons are produced. However, we show that in the nanosecond time range, under pump power densities higher than 1 TW/cm2, the distribution of the hydrated electrons is not uniform along the optical pathway of the pump beam in the water sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号