首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ab initio calculations of the MRD-CI type are reported for various states of the C2H6+ ion in two different nuclear geometries and the results are compared with the experimentally observed ethane PES in the 14–25 eV region. The calculated vertical IP values for ionization out of the 1eu, 2a2u and 2a1g MO's respectively agree well with the locations of the three ionization maxima in this spectral range. The analogous findings for excitation out of the relaxed ionic ground state find several relatively low-lying species which occupy a 2pσ* MO in addition to states resulting from simple ionization of the neutral molecule. A number of Rydberg states are also calculated at the relaxed-ion geometry, from which results it is determined that the quantum defects for such species are from 0.40–0.45 units smaller than for their counterparts in neutral systems; these findings are clearly consistent with a decrease in the core penetrability of the Rydberg electron as the effective charge is increased to Z = 2.  相似文献   

2.
Potential energy curves and properties of the low-lying electronic states of tellurium oxide have been computed using a configuration interaction treatment that includes the spin-orbit coupling interaction. Relativistic effective core potentials (RECPs) are used to describe the inner shells of both the Te and O atoms. Good agreement is obtained for the spectroscopic constants of the X1-X2(3)sigma-, a1delta, and b1sigma+ states for which experimental data are available. The ratio of the parallel and perpendicular b-X transition moments, as well as the radiative lifetime of the b state, was computed, and both results were also found to be in good agreement with measurement. The energetic order of the electronic states in TeO appears to be very similar to that observed for the isovalent O2 molecule, but the Rydberg valence-mixing effects that are so prominent in the latter's spectrum (e.g., for the Schumann-Runge bands) are totally absent in TeO.  相似文献   

3.
Large-scale ab initio coupled cluster and multi-reference configuration interaction calculations (MRD-CI) are carried out to determine the equilibrium geometry and the vertical electronic spectrum of linear C5+. Contrary to prior theoretical estimates we find three low-lying states within an energy range of 0.3 eV: 2Σu+, 2Σg+ and 2Πg and a symmetric arrangement of nuclei. Transitions from 2Σu+ to these low-lying states are dipole-allowed; sizeable oscillator strengths are computed for the 2Π+g←X2Σu+ transition at 2.62 eV and the 2Σg←X2Σu+ transition at 3.36 eV and should give a guide to spectroscopic identification of linear C5+.  相似文献   

4.
Observation of Bose-Einstein condensation in Li27 initiated the interest in the scattering length of two ground state lithium atoms when they approach each other as a radical pair triplet aSigmau+3 state. But some properties of this state are still unknown. In present work, a number of low-lying triplet states of lithium molecule are calculated by multi-configuration self-consistent field (MCSCF) and response techniques with account of spin-orbit coupling, spin-spin coupling and some other magnetic perturbations. The singlet-triplet transition probabilities to the ground state are also presented. Most results are connected with the weakly bound lowest triplet a3Sigmau+ state, whose radiative lifetime and spin-splitting are unknown so far in spite of its great importance in Bose-Einstein condensation. Calculations indicate that this state has a very small spin-splitting, lambdass=-0.01 cm-1, which is negligible in comparison with the line-width in experimental Fourier transform spectra published so far. Similar splitting is obtained for the upper state of the 1(3)Sigmag+--a3Sigmau+ transition. This is in agreement with experimental rovibronic analysis of the 1(3)Sigmag+--a3Sigmau+ band system in which the triplet structure was not resolved. The radiative lifetime of the a3Sigmau+ state is predicted to exceed 10 h.  相似文献   

5.
Ab initio electronic structure calculations are reported for low-lying electronic states, 1A1, 1A2, 3A2, 1B1, 3B1, 1B2, and 3B2 of the FNO2 molecule. Geometric parameters for the ground state 1A1 are predicted by MRSDCI calculations with a double-zeta plus polarization basis set. The vertical excitation energies for these electronic states are determined using MRSDCI/DZ+P calculations at the ground-state equilibrium conformation. The oscillator strengths and radiative lifetimes for some electronic states are calculated based on the MRSDCI wave functions. © 1993 John Wiley & Sons, Inc.  相似文献   

6.
Recent experimental advances in the ability to tune the optical properties of silsesquioxanes by functionalizing them with photoactive ligands have made these compounds attractive candidates for building blocks of photovoltaic materials. We employ state-of-the-art ab initio methodologies to determine the nature of the excited charge-transfer (CT) states that give rise to a large red-shift between absorption and emission in these molecules, in comparison to the corresponding red-shift in the individual ligand. The calculations are based on time-dependent density functional theory and employ the recently developed Baer-Neuhauser-Livshits range-separated hybrid (RSH) functional. Solvent effects are accounted for via a combination of charge-constrained density functional theory and the polarizable continuum model. We find that the experimentally observed red-shift is consistent with identifying the emissive state as a ligand-to-ligand, rather than a ligand-to-silsesquioxane, CT state. We also find that the enhanced red-shift cannot be explained without accounting for solvation effects, and we demonstrate the importance of using a RSH functional to obtain reliable predictions regarding the emissive state.  相似文献   

7.
The equilibrium geometries, excitation energies, force constants, and vibrational frequencies of the low-lying electronic states X2B1, 2A1, 2B2, and 2A2 of the PF2 radical have been calculated at the MRSDCI level with a double zeta plus polarization basis set. Our calculated geometry, force constants, and vibrational frequencies for the X2B1 state are in good agreement with experimental data. The electronic transition moments, oscillator strengths for the 2A1X2B1 and 2A2X2B1 transitions, and radiative lifetimes for the 2A1 and 2A2 states are calculated based on the MRSDCI wave functions. © 1994 by John Wiley & Sons, Inc.  相似文献   

8.
Complete active space self-consistent field (CASSCF), multireference configuration interaction (MRCI), and restricted-spin coupled-cluster singles-doubles with perturbative triples [RCCSD(T)] calculations have been carried out on low-lying doublet and quartet states of SnCl2+, employing basis sets of up to aug-cc-pV5Z quality. Effects of core correlation and off-diagonal spin-orbit interaction on computed vertical ionization energies were investigated. The best theoretical estimate of the adiabatic ionization energy (including zero-point vibrational energy correction) to the X2A1 state of SnCl2+ is 10.093+/-0.010 eV. The first photoelectron band of SnCl2 has also been simulated by employing RCCSD(T)/aug-cc-pV5Z potential energy functions and including Duschinsky rotation and anharmonicity.  相似文献   

9.
The propagator approach yields excitation energies (polarization propagator) and ionization potentials (electron propagator) without the computation of separate ground state and final state wavefunctions and is well suited for studying dynamical properties. These methods are applied to AlH molecule: excitation energies, ionization potential, optical and generalized oscillator strengths.Present adress: Laboratoire de Methodes Spectroscopiques, Université de Provence, Centre de Saint Jerôme, 13397 Marseille Cédex 4, France  相似文献   

10.
The structural and electronic characters of four types of hydroxyl group-substituted anthocyanidins (pelargonidin, cyanidin, delphinidin, and aurantinidin) were examined using quantum chemical calculations. For these cationic molecules, both the planar and non-planar structures in the electronic ground state were determined at the B3LYP/D95 level of theory. We revealed that the planar structure is slightly more stable than the non-planar structure for each molecule. For the optimized planar structures, single excitation-configuration interaction (SE-CI) based on the restricted Hartree-Fock (RHF) wave function was evaluated and the electronic character in the low-excited states was discussed in terms of the MO theory. Symmetry adapted cluster (SAC)/SAC-CI calculations were also carried out to estimate the excitation energies precisely. The results showed that hydroxylation of the phenyl group causes a change in the excitation energies without taking the solvent effects into account. The results are in agreement with spectral experiments and previous MO calculations.  相似文献   

11.
12.
Highly correlated ab initio calculations have been performed for an accurate determination of the electronic structure and of the spectroscopy of the low lying electronic states of the ZnF system. Using effective core pseudopotentials and aug-cc-pVQZ basis sets for both atoms, the potential curves, the dipole moment functions, and the transition dipole moments between relevant electronic states have been calculated at the multireference-configuration-interaction level. The spectroscopic constants calculated for the X(2)Sigma(+) ground state are in good agreement with the most recent theoretical and experimental values. It is shown that, besides the X(2)Sigma(+) ground state, the B(2)Sigma(+), the C(2)Pi, and the D(2)Sigma(+) states are bound. The A(2)Pi state, which has been mentioned in previous works, is not bound but its potential presents a shoulder in the Franck-Condon region of the X(2)Sigma(+) ground state. All of the low lying quartet states are found to be repulsive. The absorption transitions from the v=0 level of the X(2)Sigma(+) ground state toward the three bound states have been evaluated and the spectra are presented. The potential energy of the ZnF(-) molecular anion has been determined in the vicinity of its equilibrium geometry and the electronic affinity of ZnF (EA=1.843 eV with the zero energy point correction) has been calculated in agreement with the photoelectron spectroscopy experiments.  相似文献   

13.
For the first time, we have studied the potential-energy curves, spectroscopic terms, vibrational levels, and the spectroscopic constants of the ground and low-lying excited states of NiI by employing the complete active space self-consistent-field method with relativistic effective core potentials followed by multireference configuration-interaction calculations. We have identified six low-lying electronic states of NiI with doublet spin multiplicities, including three states of Delta symmetry and three states of Pi symmetry of the molecule within 15 000 cm(-1). The lowest (2)Delta state is identified as the ground state of NiI, and the lowest (2)Pi state is found at 2174.56 cm(-1) above it. These results fully support the previous conclusion of the observed spectra although our computational energy separation of the two states is obviously larger than that of the experimental values. The present calculations show that the low-lying excited states [13.9] (2)Pi and [14.6] (2)Delta are 3 (2)Pi and 3 (2)Delta electronic states of NiI, respectively. Our computed spectroscopic terms, vibrational levels, and spectroscopic constants for them are in good agreement with the experimental data available at present. In the present work we have not only suggested assignments for the observed states but also computed more electronic states that are yet to be observed experimentally.  相似文献   

14.
Quantum-chemical calculations of neutral and charged ironporphyrin (FeP, FeP+1 and FeP) systems were performed using B3LYP and MP2 methods. It was shown that all ground states of FeP (S = 1), FeP+1 (S = 3/2) and FeP (S = 1/2) systems have C2v symmetry. During the first step of electron transfer process an electron goes to β-LUMO − 1 Fe dyz-orbital of FeP+1. The second electron goes to β-LUMO of FeP which is attributed to π-system of porphyrin ring. The 3s- and 3p-orbitals do not play a significant role in the electron transfer process. The ability of FeP−1 system to form π-dative chemical bond is low. The formation of π–π-complexes is preferable.  相似文献   

15.
A wide adiabatic study is performed for NaRb molecule, involving 151Σ+ electronic states including the ionic state Na?Rb+, as well as 143Σ+, 1–91,3Π, and 1–51,3Δ states. This investigation is performed using an ab initio approach which involves the effective core potential, the core polarization potential with l‐dependent cut‐off functions. The NaRb system has been treated as a two‐electron system and the full valence configuration interaction is easily achieved. The spectroscopic constants Re, De, Te, ωe, ωexe, Be, and D0 for all these states are derived. We have also computed the vibrational levels as well their spacing for different values of J. In addition, permanent and transition dipole moments are determined and analyzed. The Dunham coefficients have been used to perform experimental spacing to compare directly with our results. The present calculations on NaRb extend previous theoretical works to numerous electronic excited states in the various symmetries. © 2014 Wiley Periodicals, Inc.  相似文献   

16.
The potential energy curves for the lowest (3)Sigma(-), (3)Pi, and (5)Sigma(-) states of the KN molecule have been calculated by the multireference singles and doubles configuration interaction method, including Davidson's corrections for quadruple excitations [MRCI(+Q)]. It is shown that the former two are bound, while the last one is repulsive. The electronic ground state of KN is predicted as (3)Sigma(-) state, although the term energy of the (3)Pi state is very small, 177.3 cm(-1). The binding energy for the (3)Sigma(-) state is evaluated as 0.838 eV, the rotational constant B(0) as 0.250 63 cm(-1), and harmonic frequency as 324.4 cm(-1). The spin-orbit coupling effects between the (3)Sigma(-) and (3)Pi states of KN are evaluated and discussed. The same MRCI(+Q) computational procedures are applied to the isovalent LiN, KC, KO, and KCl to confirm the accuracy of present calculations. Theoretical spectroscopic constants presented here will inspire experimental studies of KN.  相似文献   

17.
Ab initio electronic structures calculations are reported for the four low-lying electronic states X 2B1, 2B2, 2A2, and 2A1 of the CH2NO2 radical. The geometric parameters for the ground-state X 2B1 are predicted by MRSDCI calculations with a double zeta plus polarization basis set. The vertical excitations energies for these electronic states are determined using MRSDCI /DZ +P calculations at the ground-state equilibrium geometry and in agreement with the recent experimental data obtained via PES of the CH2NO anion. The oscillator strenghts and the radiative lifetimes for these electronic states and the spin properties for the ground state are calculated based on the MRSDCI wave functions, predicting results in good agreement with available experimental data. © 1994 John Wiley & Sons, Inc.  相似文献   

18.
The ground and low-lying excited states of CoCN have been studied by ab initio multireference single and double excitation configuration interaction (MR-SDCI) calculations with Davidson's correction Q and Cowan-Griffin's relativistic corrections. The electronic ground state of CoCN is (3)Phi(i) and the equilibrium geometry is linear with bond lengths of r(e)(Co-C)=1.8540 A and r(e)(C-N)=1.1677 A, substantially different from the experimentally derived values of r(0)(Co-C)=1.8827(7) A and r(0)(C-N)=1.1313(10) A. The first excited state is (3)Delta(i), separated from the ground state by 727 cm(-1). Larger dynamical electron correlation energy for the low-spin (3)Phi state than for the high-spin (5)Phi state makes the (3)Phi state to be the ground state, which is discussed in terms of the differences in natural orbitals. A new spin-orbit interaction scheme between the X (3)Phi(i) and 1 (3)Delta(i) states is proposed.  相似文献   

19.
《Chemical physics letters》1986,123(6):533-536
The eight low-lying doublet states of the NH+ ion are investigated with an ab initio configuration interaction method including all single and double excitations from a multi-reference configuration space (MRSD CI). The spectroscopic constants for the X2Π, A2Σ,B2Δ and C2Σ+ states and the transition moments for X2Π-A 2Σ−1 and X2Π-B2Δ are calculated. The results are compared with experiments and other calculations.  相似文献   

20.
Ab initio calculations have been carried out on the 1,3,5,7- and 1,2,4,7-tetraene configurations of the cyclooctatetraenyl radical at UHF, ROHF, MCSCF, ROCISD, QCISD, and CCSD(T) levels of theory with 6-311G(d,p) and cc-pVDZ basis sets. Although spin contamination is present, the ROCISD calculations support the energies obtained from less intensive, UHF-based coupled cluster calculations over the energies obtained from MCSCF analysis of the pi-electron orbitals. The 1,3,5,7-form is a local minimum at the coupled cluster levels, higher in energy than the resonance-stabilized 1,2,4,7-form by 10-13 kJ/mol, but bounded by a barrier of less than 0.5 kJ/mol. The isomerization surface connecting these two structures is described and results reported from integration of the vibrational Schr?dinger equation on that surface. Excited vibrational states at energies just above the isomerization barrier are dominated by the character of the 1,3,5,7-tetraenyl radical, which suggests that chemistry involving this intermediate at typical combustion temperatures may branch at this juncture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号