首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oxidation of 3-(4-methoxyphenoxy)-1,2-propanediol (MPPD) by bis(hydrogenperiodato) argentate(III) complex anion, [Ag(HIO6)2]5− has been studied in aqueous alkaline medium by use of conventional spectrophotometry. The major oxidation product of MPPD has been identified as 3-(4-methoxyphenoxy)-2-ketone-1-propanol by mass spectrometry. The reaction shows overall second-order kinetics, being first-order in both [Ag(III)] and [MPPD]. The effects of [OH] and periodate concentration on the observed second-order rate constants k′ have been analyzed, and accordingly an empirical expression has been deduced:
where [IO4 ]tot denotes the total concentration of periodate and k a = (0.19 ± 0.04) M−1 s−1, k b = (10.5 ± 0.3) M−2 s−1, and K 1 = (5.0 ± 0.8) × 10−4 M at 25.0 °C and ionic strength of 0.30 M. Activation parameters associated with k a and k b have been calculated. A mechanism is proposed, involving two pre-equilibria, leading to formation of a periodato–Ag(III)–MPPD complex. In the subsequent rate-determining steps, this complex undergoes inner-sphere electron-transfer from the coordinated MPPD molecule to the metal center by two paths: one path is independent of OH, while the other is facilitated by a hydroxide ion.  相似文献   

2.
Kinetics of aqua ligand substitution from cis-[Ru(bpy)2(H2O)2]2+ by three vicinal dioximes, namely dimethylglyoxime (L1H), 1,2-cyclohexane dionedioxime (L2H) and α-furil dioxime (L3H) have been studied spectrophotometrically in the 45–60 °C temperature range. The rate constants increase with increasing dioxime concentration and approach a limiting condition. We propose the following rate law for the reaction in the 3.5–5.5 pH range: where k 2 is the interchange rate constant from outer sphere to inner sphere complex and K E is the outer sphere association equilibrium constant. Activation parameters were calculated from the Eyring plots for all three systems: ΔH  = 59.2 ± 8.8, 63.1 ± 6.8 and 69.7 ± 8.5 kJ mol−1, ΔS  = −122 ± 27, −117 ± 21 and −99 ± 26 J K−1 mol−1 for L1H, L2H and L3H, respectively. An associative interchange mechanism is proposed for the substitution process. Thermodynamic parameters calculated from the temperature dependence of the outer sphere association equilibrium constants give negative ΔG 0 values for all the systems studied at all the temperatures (ΔH 0 = 30.05 ± 2.5, 18.9 ± 1.1 and 11.8 ± 0.2 kJ mol−1; ΔS 0 = 123 ± 8, 94 ± 3 and 74 ± 1 J K−1 mol−1 for L1H, L2H and L3H, respectively), which also support our proposition.  相似文献   

3.
The kinetics and mechanism of the oxidation of [CrIII(DPA)(IDA)(H2O)]? (DPA = dipicolinate and IDA = iminodiacetate) by periodate in the presence of Mn(II) as a catalyst have been investigated. The rate of the reaction increases with increasing pH, due to the deprotonation equilibria of the complex. Addition of Mn(II) in the concentration range of (2.5–10) × 10?6 mol dm?3 enhanced the reaction rate; the reaction is first order with respect to both [IO4 ?] and the Cr complex, and obeys the following rate law: \( {\text{Rate}} = [ {\text{Cr}}^{\text{III}} ({\text{DPA}})({\text{IDA}})({\text{H}}_{2} {\text{O}})^{ - } ][{\text{Mn}}^{\text{III}} ]\{ (k_{7} + K_{1} k_{8} /[{\text{H}}^{ + } ]) + [{\text{I}}^{\text{VII}} ]((k_{9} k_{11} /k_{ - 9} + k_{11} ) + (K_{1} k_{10} k_{12} )/(k_{ - 10} + k_{12} )[{\text{H}}^{ + } ])\} . \) Catalysis by Mn(II) is believed to be due to initial oxidation of Mn(II) to Mn(III), which acts as the oxidizing agent. It is proposed that electron transfer proceeds through an inner-sphere mechanism via coordination of IO4 ? to Cr(III). Thermodynamic activation parameters were calculated using the transition state theory equation.  相似文献   

4.
Two DOTA-based proligands bearing a pendant diphenylphosphinamide 4a and 4b were synthesised. Their Eu(III) complexes exhibit sensitised emission when excited at 270 nm via the diphenylphosphinamide chromophore. Hydration states of q = 1.5 were determined from excited state lifetime measurements (Eu.4a $ k_{{{\text{H}}_{ 2} {\text{O}}}} = 2. 1 4 \,{\text{ms}}^{ - 1} ,\;k_{{{\text{D}}_{ 2} {\text{O}}}} = 0. 6 4 \,{\text{ms}}^{ - 1} $ ; Eu.4b $ k_{{{\text{H}}_{ 2} {\text{O}}}} = 2. 6 7\, {\text{ms}}^{ - 1} ,\;k_{{{\text{D}}_{ 2} {\text{O}}}} = 1. 1 8 \,{\text{ms}}^{ - 1} $ ). In the presence of human serum albumin (HSA) (0.1 mM Eu.4a/b, 0.67 mM HSA, pH 7.4) q = 0.4 for Eu.4a ( $ k_{{{\text{H}}_{ 2} {\text{O}}}} = 1. 3 4\, {\text{ms}}^{ - 1} ,\;k_{{{\text{D}}_{ 2} {\text{O}}}} = 0. 7 5\, {\text{ms}}^{ - 1} $ ) and q = 0.6 for Eu.4b ( $ k_{{{\text{H}}_{ 2} {\text{O}}}} = 1. 8 3\, {\text{ms}}^{ - 1} ,\;k_{{{\text{D}}_{ 2} {\text{O}}}} = 1.0 5 \,{\text{ms}}^{ - 1} $ ). Relaxivites (pH 7.4, 298 K, 20 MHz) of the Gd(III) complexes in the absence and presence of HSA (0.1 mM Gd.4a/b, 0.67 mM HSA) were: Gd.4a (r 1 = 7.6 mM?1s?1 and r 1 = 11.7 mM?1s?1) and Gd.4b. (r 1 = 7.3 mM?1s?1 and r 1 = 16.0 mM?1s?1). These relatively modest increases in r 1 are consistent with the change in inner-sphere hydration on binding to HSA shown by luminescence measurements on Eu.4a/b. Binding constants for HSA determined by the quenching of luminescence (Eu) and enhancement of relaxivity (Gd) were Eu.4a (27,000 M?1 ± 12%), Eu.4b (32,000 M?1 ± 14%), Gd.4a (21,000 M?1 ± 15%) and Gd.4b (26,000 M?1 ± 15%).  相似文献   

5.
Pulse radiolysis involving reactions of solvated electrons and benzophenone ketyl radicals in 1-octanol with selected compounds from bis-triazinyl pyridines and bis-triazinyl bipyridines, BT(B)P family, developed for extraction of trivalent actinides have been studied. The designated ligands were: 2,6-bis(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-benzo-[1,2,4]triazin-3-yl)pyridine, 6,6′-bis(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-benzo-[1,2,4-]triazin-3-yl)-[2,2′]bipyridine, 6,6′-bis(5,6-diethyl-[1,2,4]triazin-3-yl)-[2,2′]bipyridine and 6,6′-bis(5,6-dipentyl-[1,2,4]triazin-3-yl)-[2,2′]bipyridine. Reactions of the ligands with solvated electrons in 1-octanol are fast. The rate constants were determined as equal to: $ k_{{{\text{CyMe}}_{4} {\text{BTP}}}} . $  = (2.4 ± 0.2) × 109 dm3 mol?1 s?1, $ k_{{{\text{CyMe}}_{ 4} {\text{BTBP}}}} $  = (1.7 ± 0.3) × 109 dm3 mol?1 s?1, $ k_{{{\text{C}}_{ 2} {\text{BTBP}}}} $  = (1.3 ± 0.3) × 109 dm3 mol?1 s?1 and $ k_{{{\text{C}}_{ 5} {\text{BTBP}}}} $  = (1.7 ± 0.3) × 109 dm3 mol?1 s?1. Reactions of the ligands with benzophenone ketyl radicals are much slower and the measured rate constants were as follows: $ k_{{{\text{CyMe}}_{ 4} {\text{BTP}}}} $  = 6.7 × 107 dm3 mol?1 s?1 and $ k_{{{\text{CyMe}}_{ 4} {\text{BTBP}}}} $  = 3.2 × 107 dm3 mol?1 s?1.  相似文献   

6.
The kinetics of hexacyanoferrate(III) reduction by hydrogen peroxide in strongly alkaline media leading to hexacyanoferrate(II) ion have been studied spectrophotometrically within the wavelength range 300–500 nm. The reaction obeys a simple pseudo-first-order rate expression under the applied conditions, namely, a large excess of the reductant and OH anion concentrations, and a low oxidant concentration. The linear dependences of the pseudo-first-order rate constant on OH and H2O2 concentrations are consistent with the rate law of the form: where and are the second- and the pseudo-third-order rate constants for the electron transfer from HO2 and O2 2− to [Fe(CN)6]3−, respectively. The apparent activation parameters determined at 0.4 M NaOH are as follows: ΔH # = (18.0 ± 1.0) kJ mol−1 and ΔS # = (−155 ± 3.5) J K−1 mol−1. The possible mechanism of the reaction is discussed.  相似文献   

7.
Thermal rate constants of the CH4 + O2 = CH3 + HO2 reaction were calculated from first principles using both the conventional transition state theory (TST) and canonical variational TST methods with correction from the explicit hindered rotation treatment. The CCSD(T)/aug-cc-pVTZ//BH&HLYP/aug-cc-pVDZ method was used to characterize the necessary potential energy surface along the minimum energy path. We found that the correction for hindered rotation treatment, as well as the re-crossing effects noticeably affect the rate constants of the title process. The calculated rate constants for both forward and reverse directions are expressed in the modified Arrhenius form as \(k_{\text{forward}}^{\text{CVT/HR}} = 2.157 \times 10^{ - 18} \times T^{2.412} \times \,\exp \,( - \frac{25812}{T})\) and \(k_{\text{reverse}}^{\text{CVT/HR}} = 1.375 \times 10^{ - 19} \times T^{2.183} \times \,{\kern 1pt} \exp \,\,(\frac{2032}{T})\) (cm3 molecule?1 s?1) for the temperature range of 300–2,500 K. Being in good agreement with literature data, the results provide solid basis information for the investigation of the entire alkane + O2 = alkyl radical + HO2 reaction class.  相似文献   

8.
The oxidation of a ternary complex of chromium(III), [CrIII(DPA)(Mal)(H2O)2]?, involving dipicolinic acid (DPA) as primary ligand and malonic acid (Mal) as co-ligand, was investigated in aqueous acidic medium. The periodate oxidation kinetics of [CrIII(DPA)(Mal)(H2O)2]? to give Cr(VI) under pseudo-first-order conditions were studied at various pH, ionic strength and temperature values. The kinetic equation was found to be as follows: \( {\text{Rate}} = {{\left[ {{\text{IO}}_{4}^{ - } } \right]\left[ {{\text{Cr}}^{\text{III}} } \right]_{\text{T}} \left( {{{k_{5} K_{5} + k_{6} K_{4} K_{6} } \mathord{\left/ {\vphantom {{k_{5} K_{5} + k_{6} K_{4} K_{6} } {\left[ {{\text{H}}^{ + } } \right]}}} \right. \kern-0pt} {\left[ {{\text{H}}^{ + } } \right]}}} \right)} \mathord{\left/ {\vphantom {{\left[ {{\text{IO}}_{4}^{ - } } \right]\left[ {{\text{Cr}}^{\text{III}} } \right]_{\text{T}} \left( {{{k_{5} K_{5} + k_{6} K_{4} K_{6} } \mathord{\left/ {\vphantom {{k_{5} K_{5} + k_{6} K_{4} K_{6} } {\left[ {{\text{H}}^{ + } } \right]}}} \right. \kern-0pt} {\left[ {{\text{H}}^{ + } } \right]}}} \right)} {\left\{ {\left( {\left[ {{\text{H}}^{ + } } \right] + K_{4} } \right) + \left( {K_{5} \left[ {{\text{H}}^{ + } } \right] + K_{6} K_{4} } \right)\left[ {{\text{IO}}_{4}^{ - } } \right]} \right\}}}} \right. \kern-0pt} {\left\{ {\left( {\left[ {{\text{H}}^{ + } } \right] + K_{4} } \right) + \left( {K_{5} \left[ {{\text{H}}^{ + } } \right] + K_{6} K_{4} } \right)\left[ {{\text{IO}}_{4}^{ - } } \right]} \right\}}} \) where k 6 (3.65 × 10?3 s?1) represents the electron transfer reaction rate constant and K 4 (4.60 × 10?4 mol dm?3) represents the dissociation constant for the reaction \( \left[ {{\text{Cr}}^{\text{III}} \left( {\text{DPA}} \right)\left( {\text{Mal}} \right)\left( {{\text{H}}_{2} {\text{O}}} \right)_{2} } \right]^{ - } \rightleftharpoons \left[ {{\text{Cr}}^{\text{III}} \left( {\text{DPA}} \right)\left( {\text{Mal}} \right)\left( {{\text{H}}_{2} {\text{O}}} \right)\left( {\text{OH}} \right)} \right]^{2 - } + {\text{H}}^{ + } \) and K 5 (1.87 mol?1 dm3) and K 6 (22.83 mol?1 dm3) represent the pre-equilibrium formation constants at 30 °C and I = 0.2 mol dm?3. Hexadecyltrimethylammonium bromide (CTAB) was found to enhance the reaction rate, whereas sodium dodecyl sulfate (SDS) had no effect. The thermodynamic activation parameters were estimated, and the oxidation is proposed to proceed via an inner-sphere mechanism involving the coordination of IO4 ? to Cr(III).  相似文献   

9.
The kinetics of oxidation of N,N′-ethylenebis(isonitrosoacetyleacetoneimine)copper(II) complex, CuIIL, by N-bromosuccinimide (SBr) in weakly aqueous acidic solutions was studied under pseudo-first-order conditions. Plots of ln(A  ? A t ) versus time where A t and A are absorbance values of the Cu(III) product at time t and infinity, respectively, showed marked deviations from linearity. The curves showed an acceleration of reaction rate consistent with an autocatalytic behavior. In the presence of Hg(II) ions, plots of ln(A  ? A t ) versus time are linear up to >85 % of reaction. The value of the observed rate constant, k obs, increases with decreasing pH. At constant reaction conditions, the dependence of the observed rate constants, k obs, is described by Eq. (1). 1 $$ k_{\text{obs}} = k_{\text{o}} + k_{1} \left[ {{\text{H}}^{ + } } \right] $$ The dependence of both k o and k 1 on [SBr] is not linear. The mechanism of the title reaction is consistent with an inner sphere mechanism in which a pre-equilibrium step precedes the electron transfer step. The overall rate law is represented by Eq. (2) where [CuIIL]t and K 1 represent the total copper(II) complex concentration and the pre-equilibrium formation constant, respectively. 2 $$ d\left[ {{\text{Cu}}^{\text{III}} {\text{L}}^{ + } } \right]/dt = \left\{ {\left( {k_{\text{o}} + k_{1} \left[ {{\text{H}}^{ + } } \right]} \right)\left[ {\text{SBr}} \right]\left[ {{\text{Cu}}^{\text{II}} {\text{L}}} \right]_{t} } \right\}/\left( {1 + K_{1} \left[ {\text{SBr}} \right]} \right) $$ .  相似文献   

10.
The standard enthalpies of formation of alkaline metals thiolates in the crystalline state were determined by reaction-solution calorimetry. The obtained results at 298.15 K were as follows: \Updelta\textf H\textm\texto (\textMSR,  \textcr) \Updelta_{\text{f}} H_{\text{m}}^{\text{o}} ({\text{MSR,}}\;{\text{cr}}) /kJ mol−1 = −259.0 ± 1.6 (LiSC2H5), −199.9 ± 1.8 (NaSC2H5), −254.9 ± 2.4 (NaSC4H9), −240.6 ± 1.9 (KSC2H5), −235.8 ± 2.0 (CsSC2H5). These results where compared with the literature values for the corresponding alkoxides and together with values for \Updelta\textf H\textm\texto ( \textMSH,  \textcr) \Updelta_{\text{f}} H_{\text{m}}^{\text{o}} \left( {{\text{MSH}},\;{\text{cr}}}\right) were used to derive a consistent set of lattice energies for MSR compounds based on the Kapustinskii equation. This allows the estimation of the enthalpy of formation for some non-measured thiolates.  相似文献   

11.
Detailed reaction mechanisms of methyl acrylate (MA) and methyl 3-methyl acrylate (M3MA) with ozone have been investigated using quantum chemistry calculations based on the CCSD(T)/6-31G(d)+CF//B3LYP/6-31+G(d,p) level of theory. Possible reaction channels and products have been presented and discussed. The temperature-dependent and pressure-independent overall and site-specific rate constants are calculated by employing multichannel RRKM theory. The obtained overall rate constants (in cm3 molecule?1 s?1) based on the CCSD(T)+CF energies can be described as: $ k_{{({\text{MA}} + {\text{O}}_{ 3} )}} = 3. 7 4 \times 10^{ - 1 3} { \exp }\,( - 3 7 4 6. 1 2/T) $ and $ k_{{({\text{M3MA}} + {\text{O}}_{ 3} )}} = 5. 1 2 \times 10^{ - 1 3} { \exp }( - 3 3 5 4. 8 7/T) $ at 200–400 K and 760 Torr. Under atmospheric conditions, the dominant products of ozonolysis of MA and M3MA are methyl glyoxylate and formaldehyde, methyl glyoxylate and acetaldehyde, respectively. The results of theoretical study are in good agreement with the available experimental measurements. Researches on branching ratios and atmospheric lifetimes also have been obtained as complement to the experimental results.  相似文献   

12.
The mer-[Ru(pic)3] isomer, where pic is 2-pyridinecarboxylic acid, undergoes base hydrolysis at pH > 12. The reaction was monitored spectrophotometrically within the UV–Vis spectral range. The product of the reaction, the [Ru(pic)2(OH)2] ion, is formed via a consecutive two-stage process. The chelate ring opening is proceeded by the nucleophilic attack of OH ion at the carbon atom of the carboxylic group and the deprotonation of the attached hydroxo group. In the second stage, the fast deprotonation of the coordinated OH ligand leads to liberation of the monodentato bonded picolinate. The dependence of the observed pseudo-first-order rate constant on [OH] is given by k\textobs1 = \frack + k1 [\textOH - ] + k + k2 K1 [\textOH - ]2 k - + k1 + ( k + + k2 K1 )[\textOH - ] + k + K1 [\textOH - ]2 k_{{{\text{obs}}1}} = \frac{{k_{ + } k_{1} [{\text{OH}}^{ - } ] + k_{ + } k_{2} K_{1} [{\text{OH}}^{ - } ]^{2} }}{{k_{ - } + k_{1} + \left( {k_{ + } + k_{2} K_{1} } \right)[{\text{OH}}^{ - } ] + k{}_{ + }K_{1} [{\text{OH}}^{ - } ]^{2} }} and ( k\textobs2 = \frackca + kcb K2 [\textOH - ]1 + K2 [\textOH - ] ) \left( {k_{{{\text{obs}}2}} = \frac{{k_{ca} + k_{cb} K_{2} [{\text{OH}}^{ - } ]}}{{1 + K_{2} [{\text{OH}}^{ - } ]}}} \right) for the first and the second stage, respectively, where k 1, k 2, k -, k ca , k cb are the first-order rate constants and k + is the second-order one, K 1 and K 2 are the protolytic equilibria constants.  相似文献   

13.
The cheletropic elimination process of N2 from (2,5-dihydro-1H-pyrrol-1-ium-1-ylidene) amide (C4H6N2) has been studied computationally using density functional theory, along with the M06-2X/aug-cc-pVTZ level of theory. The calculated energy profile has been supplemented with calculations of kinetic rate constants using transition state theory (TST) and statistical Rice–Ramsperger–Kassel–Marcus (RRKM) theory. This elimination process takes place spontaneously with an activation energy around 33 kJ/mol. Pressure dependence of the rate constants revealed that the TST approximation breaks down and fall-off expression is necessary for the kinetic modeling. At temperatures ranging from 240 to 360 K and atmospheric pressure, the unimolecular rate constant is evaluated from RRKM theory as \(k_{{(240 - 360\,{\text{K}})}}^{{1.0{\text{atm}}}} = 1.0249 \times 10^{12} \times {\text{e}}^{{ - \frac{{33.11\;{\text{kJ}}/{\text{mol}}}}{RT}}} \,{\text{s}}^{ - 1}\). Bonding changes along the reaction coordinate have been studied using bonding evolution theory. Electron localization function topological analysis reveals that the cheletropic elimination is characterized topologically by four successive structural stability domains (SSDs). Breaking of C–N bonds (Rx = 0.1992 amu1/2 Bohr) and the other selected points separating the SSDs along the reaction coordinate occur in the vicinity of the transition state.  相似文献   

14.
The kinetics of oxidation of the chromium(III)-DL- aspartic acid complex, [CrIIIHL]+ by periodate have been investigated in aqueous medium. In the presence of FeII as a catalyst, the following rate law is obeyed:
Catalysis is believed to be due to the oxidation of iron(II) to iron(III), which acts as the oxidizing agent. Thermodynamic activation parameters were calculated. It is proposed that electron transfer proceeds through an inner-sphere mechanism via coordination of IO 4 - to CrIII.  相似文献   

15.
From extraction experiments and γ-activity measurements, the extraction constant corresponding to the equilibrium \textCs + ( \textaq ) + \textA - ( \textaq ) + 1( \textnb )\underset \rightleftharpoons 1·\textCs + ( \textnb ) + \textA - ( \textnb ) {\text{Cs}}^{ + } \left( {\text{aq}} \right) + {\text{A}}^{ - } \left( {\text{aq}} \right) + {\mathbf{1}}\left( {\text{nb}} \right)\underset {} \rightleftharpoons {\mathbf{1}}\cdot{\text{Cs}}^{ + } \left( {\text{nb}} \right) + {\text{A}}^{ - } \left( {\text{nb}} \right) taking place in the two-phase water-nitrobenzene system (A = picrate, 1 = dibenzo-21-crown-7; aq = aqueous phase, nb = nitrobenzene phase) was evaluated as log K ex (1·Cs+, A) = 4.4 ± 0.1. Further, the stability constant of the 1·Cs+ complex in nitrobenzene saturated with water was calculated for a temperature of 25 °C: log βnb (1·Cs+) = 6.3 ± 0.1. Finally, by using quantum mechanical DFT calculations, the most probable structure of the resulting cationic complex species 1·Cs+ was solved.  相似文献   

16.
The oxidation of l-valine (l-val) by diperiodatocuprate(III) (DPC) in aqueous alkaline medium at a constant ionic strength of 3.0 × 10−3 mol dm−3 was studied spectrophotometrically at 298 K and follows the rate law;
where K 4, K 5 and K 6 are the equilibrium constants for the different steps involved in the mechanism, k is the rate constant for the slow step of the reaction. The appearance of [l-val] term in both numerator and denominator explains the observed less than unit order in [l-val]. Similarly the appearances of [H3IO6 2−] and [OH] in the denominator obey the experimental negative less than unit order in [H3IO6 2−] and [OH], respectively. The oxidation reaction in alkaline medium proceeds via a DPC-l-valine complex, which decomposes slowly in a rate determining step followed by other fast steps to give the products. The main products were identified by spot test and spectroscopic studies.  相似文献   

17.
Colloidal indigo is reduced to an aqueous solution of leuco-indigo in a mediated two-electron process converting the water-insoluble dye into the water-soluble leuco form. The colloidal dye does not interact directly with the electrode surface, and to employ an electrochemical process for this reduction, the redox mediator 1,8-dihydroxyanthraquinone (1,8-DHAQ) is used to transfer electrons from the electrode to the dye. The mediated reduction process is investigated at a (500-kHz ultrasound-assisted) rotating disc electrode, and the quantitative analysis of voltammetric data is attempted employing the Digisim numerical simulation software package. At the most effective temperature, 353 K, the diffusion coefficient for 1,8-DHAQ is (0.84±0.08)×10−9 m2 s−1, and it is shown that an apparently kinetically controlled reaction between the reduced form of the mediator and the colloidal indigo occurs within the diffusion layer at the electrode surface. The apparent bimolecular rate constant k app=3 mol m−3 s−1 for the rate law \fracd[ \textleuco - \textindigo ] dt = k\textapp ×[ \textmediator ] ×[ \textindigo ]\frac{{d{\left[ {{\text{leuco}} - {\text{indigo}}} \right]}}} {{dt}} = k_{{{\text{app}}}} \times {\left[ {{\text{mediator}}} \right]} \times {\left[ {{\text{indigo}}} \right]} is determined and attributed to a mediator diffusion controlled dissolution of the colloid particles. The average particle size and the number of molecules per particles are estimated from the apparent bimolecular rate constant and confirmed by scanning electron microscopy.  相似文献   

18.
The kinetics of alkaline hydrolysis of Co(Asn)2, yielding Co(OH)2, NH3 and aspartic acid, have been studied spectrophotometrically, and the effects of CoII and NaOH concentrations on the reaction rate determined. The rate increases with increasing [NaOH], whereas variation of [CoII] has no significant effect. The kinetics of NH3 evolution conform to the rate law:
It is proposed that the reaction proceeds through formation of a dianionic tetrahedral intermediate.  相似文献   

19.
For getting an insight into the mechanism of atmospheric autoxidation of sulfur(IV), the kinetics of this autoxidation reaction catalyzed by CoO, Co2O3 and Ni2O3 in buffered alkaline medium has been studied, and found to be defined by Eqs. I and II for catalysis by cobalt oxides and Ni2O3, respectively.
(I)
(II)
The values of empirical rate parameters were: A{0.22(CoO), 0.8 L mol−1s−1 (Co2O3)}, K 1{2.5 × 102 (Ni2O3)}, K 2{2.5 × 102(CoO), 0.6 × 102 (Co2O3)} and k 1{5.0 × 10−2(Ni2O3), 1.0 × 10−6(CoO), 1.7 × 10−5 s−1(Co2O3)} at pH 8.20 (CoO and Co2O3) and pH 7.05 (Ni2O3) and 30 °C. This is perhaps the first study in which the detailed kinetics in the presence of ethanol, a well known free radical scavenger for oxysulfur radicals, has been carried out, and the rate laws for catalysis by cobalt oxides and Ni2O3 in the presence of ethanol were Eqs. III and IV, respectively.
(III)
(IV)
For comparison, the effect of ethanol on these catalytic reactions was studied in acidic medium also. In addition, alkaline medium, the values of the inhibition factor C were 1.9 × 104 and 4.0 × 10L mol−1 s for CoO and Co2O3, respectively; for Ni2O3, C was only 3.0 × 102 only. On the other hand, in acidic medium, the values of this factor were all low: 20 (CoO), 0.7 (Co2O3) and 1.4 (Ni2O3). Based on these results, a radical mechanism for CoO and Co2O3 catalysis in alkaline medium, and a nonradical mechanism for Ni2O3 in both alkaline and acidic media and for cobalt oxides in acidic media are proposed.  相似文献   

20.
From extraction experiments and γ-activity measurements, the exchange extraction constants corresponding to the general equilibrium M+ (aq) + 1·Na+ (org) $ \Leftrightarrow $ 1·M+ (org) + Na+ (aq) taking place in the two-phase water–phenyltrifluoromethyl sulfone (abbrev. FS 13) system (M+ = Li+, H3O+, NH4 +, Ag+, Tl+, K+, Rb+, Cs+; 1 = benzo-18-crown-6; aq = aqueous phase, org = FS 13 phase) were evaluated. Further, the stability constants of the 1·M+ complexes in FS 13 saturated with water were calculated; they were found to increase in the series of $ {\text{Cs}}^{ + } \, < \,{\text{Rb}}^{ + } \, < \,{\text{H}}_{ 3} {\text{O}}^{ + } \, < \,{\text{Ag}}^{ + } \, < \,{\text{Li}}^{ + } \, < \,{\text{NH}}_{4}^{ + } \, < \,{\text{K}}^{ + } \, < \,{\text{Tl}}^{ + } $ .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号