首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
强辐射催化法提纯多晶硅   总被引:1,自引:0,他引:1       下载免费PDF全文
陈应天  何祚庥 《物理学报》2011,60(7):78104-078104
将低纯度的金属硅,提纯成可用于制造太阳能电池的高纯硅材料的主要关键, 是去除材料中的硼杂质.本文提出了一种采用特殊的造渣过程以去除硼杂质的新方法.在这种新方法中,为了促进快速的化学反应,采用高密度的光子作为催化剂,以达到太阳能级硅材料的标准.本文对使用这种新的强辐射催化法炼硅的高温工具、冶炼方法、材料配方、材料的混合、以及渣剂的分离等关键技术,进行了详尽的公开和讨论,并在强辐射光催化原理的研究方面提出了一些探索性的机理.为了方便读者使用本文所提出的方法,建立起一套完整的提炼太阳能级硅材料的工业系统,本文也 关键词: 多晶硅提纯 光催化 太阳炉 除硼 除磷 多晶硅  相似文献   

2.
在氟化物电解质体系下,把Cu与冶金级多晶硅熔配成合金作为阳极,利用杂质与硅析出电位的差别,通过控制电解工艺条件和参数,对冶金硅进行了电解精炼提纯研究.结果表明,阳极铜硅合金对硅中的杂质有滞留作用,且在大电流密度下Cu不会随着合金中硅的减少而溶解到电解质中;预电解对电解质净化效果明显,XRF分析表明P含量从10降为1ppmw;阴极电沉积的硅呈颗粒状,并与电解质混杂,随着电解时间的延长,分散的硅的颗粒聚集成1—2cm直径的大尺寸硅球.ICP-AES分析表明,最后得到的产物硅与冶金级硅相比,硼含量由12·7降低到2·2ppmw,磷含量由98·6减少到4·1ppmw,说明电解精炼除杂进行多晶硅的提纯是有效和可行的.  相似文献   

3.
Based on the experimental results of Chen et al. to use the solar furnace and medium frequency induction furnace to extract boron impurity from metallurgical silicon, we propose a strong radiation catalysis mechanism to explain the difference of reaction rates in these two furnaces. The postulate assuming the photons striking on the material not only increase the thermal energy of the molecules of reactants but also lower down the energy barrier of the reaction to speed up the chemical reaction. It is believed the photon catalysis mechanism is universal in most of high temperature chemical reactions and looking forward to more evidences for the postulate proposed in this article.  相似文献   

4.
The availability of low-cost alternatives to electronic grade silicon has been and still is the condition for the extensive use of photovoltaics as an efficient sun harvesting system. The first step towards this objective was positively carried out in the 1980s and resulted in the reduction in cost and energy of the growth process using as feedstock electronic grade scraps and a variety of solidification procedures, all of which deliver a multi-crystalline material of high photovoltaic quality. The second step was an intense R&D activity aiming at defining and developing at lab scale a new variety of silicon, called “solar grade” silicon, which should fulfil the requirement of both cost effectiveness and high conversion efficiency. The third step involved and still involves the development of cost-effective technologies for the manufacture of solar grade silicon, in alternative to the classical Siemens route, which relays, as is well-known, to the pyrolitic decomposition of high-purity trichlorosilane and which is, also in its more advanced versions, extremely energy intensive. Aim of this paper is to give the author’s viewpoint about some open questions concerning bulk solar silicon for PV applications and about challenges and chances of novel feedstocks of direct metallurgical origin.  相似文献   

5.
We propose a new method to reveal a direct transformation from solar energy to solar electricity. Instead of using electricity in the process, we use concentrated solar rays with a crucibleless process to upgrade metallurgical silicon into solar-grade silicon feedstock.  相似文献   

6.
Small amounts of multicrystalline silicon were melted in an electron beam furnace in different experimental conditions in order to investigate the oxygen evaporation behavior during the electron beam melting (EBM) process. The oxygen content level before and after EBM was determined by secondary ion mass spectroscopy. The oxygen content was reduced from 6.177 to 1.629 ppmw when silicon was melted completely at 15 kW with removal efficiency up to 73.6 %. After that, it decreased continually to <0.0517 ppmw when the refining time exceeded 600 s with a removal efficiency of more than 99.08 %. During the melting process, the evaporation rate of silicon is 1.10 × 10?5 kg/s. The loss of silicon could be reduced up to 1.7 % during oxygen removal process to a desirable figure, indicating EBM is an effective method to remove oxygen from silicon and decrease the loss of silicon.  相似文献   

7.
This work investigates the photo-thermal treatment of solar grade (SG) silicon to reduce impurities to a low level suitable for high efficiency low-cost solar cells application. It describes experiment carried out by using a tungsten lamps furnace (rapid thermal processing, RTP) to purify solar grade silicon wafers using a combination of porous silicon (PS) and silicon tetrachloride. This process enables to attract the impurities towards the porous layer where they react with SiCl4 to form metallic chlorides. The gettering effect was studied using the Hall Effect and the Van Der Pauw methods to measure the resistivity, the majority carrier concentration and mobility. We have obtained a significant improvement of the majority carrier mobility after such thermo-chemical treatment. The gettering efficiency is also evaluated by the relative increase of the minority carrier diffusion length L, measured by the light beam induced current (LBIC) technique.  相似文献   

8.
This Letter investigates the important parameters of illumination for control of hydrogen charge states in p‐type silicon solar cells. Through variations in the wavelength and intensity of illumination, evidence is provided for the importance of the neutral charge state of interstitial hydrogen, H0, for the passivation of defects in upgraded metallurgical grade (UMG) silicon. It is shown that through this approach minority carrier lifetimes may be achieved in excess of those realised through previous techniques, resulting in open‐circuit voltages (iVOC) over 710 mV. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

9.
张晓丹  郑新霞  许盛之  林泉  魏长春  孙建  耿新华  赵颖 《中国物理 B》2011,20(10):108801-108801
We report on the development of single chamber deposition of microcrystalline and micromorph tandem solar cells directly onto low-cost glass substrates. The cells have pin single-junction or pin/pin double-junction structures on glass substrates coated with a transparent conductive oxide layer such as SnO2 or ZnO. By controlling boron and phosphorus contaminations, a single-junction microcrystalline silicon cell with a conversion efficiency of 7.47% is achieved with an i-layer thickness of 1.2 μm. In tandem devices, by thickness optimization of the microcrystalline silicon bottom solar cell, we obtained an initial conversion efficiency of 9.91% with an aluminum (Al) back reflector without a dielectric layer. In order to enhance the performance of the tandem solar cells, an improved light trapping structure with a ZnO/Al back reflector is used. As a result, a tandem solar cell with 11.04% of initial conversion efficiency has been obtained.  相似文献   

10.
An effective passivation on the front side boron emitter is essential to utilize the full potential of solar cells fabricated on n‐type silicon. However, recent investigations have shown that it is more difficult to achieve a low surface recombination velocity on highly doped p‐type silicon than on n‐type silicon. Thus, the approach presented in this paper is to overcompensate the surface of the deep boron emitter locally by a shallow phosphorus diffusion. This inversion from p‐type to n‐type surface allows the use of standard technologies which are used for passivation of highly doped n‐type surfaces. Emitter saturation current densities (J0e) of 49 fA/cm2 have been reached with this approach on SiO2 passivated lifetime samples. On solar cells a certified conversion efficiency of 21.7% with an open‐circuit voltage (Voc) of 676 mV was achieved. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
To date, gallium‐doped Czochralski (Cz) silicon has constituted a solar cell bulk material free of light‐induced degradation. However, we measure light‐induced degradation in gallium‐doped Cz silicon in the presence of copper impurities. The measured degradation depends on the copper concentration and the material resistivity. Gallium‐doped Cz silicon is found to be less sensitive to copper impurities than boron‐doped Cz silicon, emphasizing the role of boron in the formation of copper‐related light‐induced degradation. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
Light‐induced degradation (LID) has been identified to be a critical issue for solar cells processed on boron‐doped silicon substrates. Typically, Czochralski‐grown silicon (Cz‐Si) has been reported to suffer from stronger LID than block‐cast multicrystalline silicon (mc‐Si) due to higher oxygen concentrations. This work investigates LID under conditions practically relevant under module operation on different cell types. It is shown that aluminium oxide (AlOx) passivated mc‐Si solar cells degrade more than a reference aluminium back surface field mc‐Si cell and, remarkably, an AlOx passivated Cz‐Si solar cell. The defect which is activated by illumination is shown to be doubtful a sole bulk effect while the AlOx passivation might play a certain role. This work may contribute to a re‐evaluation of the suitability of boron‐doped Cz‐ and mc‐Si for solar cells with very high efficiencies. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

13.
By inserting a thin highly doped crystalline silicon layer between the base region and amorphous silicon layer in an interdigitated back-contact(IBC) silicon solar cell, a new passivation layer is investigated. The passivation layer performance is characterized by numerical simulations. Moreover, the dependence of the output parameters of the solar cell on the additional layer parameters(doping concentration and thickness) is studied. By optimizing the additional passivation layer in terms of doping concentration and thickness, the power conversion efficiency could be improved by a factor of2.5%, open circuit voltage is increased by 30 mV and the fill factor of the solar cell by 7.4%. The performance enhancement is achieved due to the decrease of recombination rate, a decrease in solar cell resistivity and improvement of field effect passivation at heterojunction interface. The above-mentioned results are compared with reported results of the same conventional interdigitated back-contact silicon solar cell structure. Furthermore, the effect of a-Si:H/c-Si interface defect density on IBC silicon solar cell parameters with a new passivation layer is studied. The additional passivation layer also reduces the sensitivity of output parameter of solar cell to interface defect density.  相似文献   

14.
We demonstrate industrially feasible large‐area solar cells with passivated homogeneous emitter and rear achieving energy conversion efficiencies of up to 19.4% on 125 × 125 mm2 p‐type 2–3 Ω cm boron‐doped Czochralski silicon wafers. Front and rear metal contacts are fabricated by screen‐printing of silver and aluminum paste and firing in a conventional belt furnace. We implement two different dielectric rear surface passivation stacks: (i) a thermally grown silicon dioxide/silicon nitride stack and (ii) an atomic‐layer‐deposited aluminum oxide/silicon nitride stack. The dielectrics at the rear result in a decreased surface recombination velocity of Srear = 70 cm/s and 80 cm/s, and an increased internal IR reflectance of up to 91% corresponding to an improved Jsc of up to 38.9 mA/cm2 and Voc of up to 664 mV. We observe an increase in cell efficiency of 0.8% absolute for the cells compared to 18.6% efficient reference solar cells featuring a full‐area aluminum back surface field. To our knowledge, the energy conversion efficiency of 19.4% is the best value reported so far for large area screen‐printed solar cells. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
姜丽丽  路忠林  张凤鸣  鲁雄 《物理学报》2013,62(11):110101-110101
本文针对低少子寿命铸造多晶硅片进行试验, 通过一种将多温度梯度磷扩散吸杂工艺与低温退火工艺结合的新型低温退火吸杂工艺, 去除低少子寿命多晶硅片中影响其电性能的Fe杂质及部分晶体缺陷, 提高低少子寿命多晶硅所生产的太阳电池各项电性能. 通过低温退火磷扩散吸杂工艺与其他磷扩散吸杂工艺的比较, 证明了低温退火吸杂工艺具有更好的磷吸杂和修复晶体缺陷的作用. IV-measurement发现经过低温退火工艺处理后的低少子寿命多晶硅, 制备的太阳电池光电转换效率比其他实验组高0.2%, 表明该工艺能有效地提高低少子寿命多晶硅太阳电池各项电性能参数及电池质量. 本研究结果表明新型低温退火磷吸杂工艺可将低少子寿命硅片应用于大规模太阳电池生产中, 提高铸造多晶硅材料在太阳能领域的利用率, 节约铸造多晶硅的生产成本. 关键词: 低温退火 磷吸杂 低少子寿命多晶硅 太阳电池  相似文献   

16.
肖友鹏  王涛  魏秀琴  周浪 《物理学报》2017,66(10):108801-108801
硅异质结太阳电池是一种由非晶硅薄膜层沉积于晶硅吸收层构成的高效低成本的光伏器件,是一种具有大面积规模化生产潜力的光伏产品.异质结界面钝化品质、发射极的掺杂浓度和厚度以及透明导电层的功函数是影响硅异质结太阳电池性能的主要因素.针对这些影响因素已经有大量的研究工作在全世界范围内展开,并且有诸多研究小组提出了器件效率限制因素背后的物理机制.洞悉物理机制可为今后优化设计高性能的器件提供准则.因此及时总结硅异质结太阳电池的物理机制和优化设计非常必要.本文主要讨论了晶硅表面钝化、发射极掺杂层和透明导电层之间的功函数失配以及由此形成的肖特基势垒;讨论了屏蔽由功函数失配引起的能带弯曲所需的特征长度,即屏蔽长度;介绍了硅异质结太阳电池优化设计的数值模拟和实践;总结了硅异质结太阳电池的研究现状和发展前景.  相似文献   

17.
The boron–oxygen‐related recombination center responsible for the light‐induced degradation of solar cells made on boron‐doped oxygen‐contaminated silicon is deactivated by simultaneously annealing the silicon wafer in the temperature range 135–210 °C and illuminating it with white light. The recombination lifetime after deactivation is found to be stable under illumination at room temperature. The deactivation process is shown to be thermally activated with an activation energy of 0.7 eV. Based on the experimental findings, a defect reaction model is proposed explaining the deactivation of the boron–oxygen center. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
赵生盛  徐玉增  陈俊帆  张力  侯国付  张晓丹  赵颖 《物理学报》2019,68(4):48801-048801
免掺杂、非对称异质接触的新型太阳电池由于近几年的飞速发展,理论转化效率已达到28%,具有较大的发展空间,引起了人们的重视.由于传统晶硅太阳电池产业存在生产设备成本高、原材料易燃易爆等诸多限制,市场对太阳电池产业低成本、绿色无污染的期待越来越高,极大地增加了免掺杂、非对称异质接触的新型太阳电池研究和开发的必要性.为了进一步加快免掺杂、非对称异质接触晶体硅太阳电池的研究进度,本文对其发展现状进行了综述,着重讨论了过渡金属氧化物(TMO)载流子选择性运输的基本原理、制备技术以及空穴传输层、电子传输层和钝化层对基于TMO构建的免掺杂、非对称异质接触(DASH)太阳电池性能的影响,以期对电池的工作机理、材料选择有更深刻的认识,为新型高效的DASH太阳电池制备提供指导.  相似文献   

19.
This paper studies boron contamination at the interface between the p and i layers of μ c-Si:H solar cells deposited in a single-chamber PECVD system. The boron depth profile in the i layer was measured by Secondary Ion Mass Spectroscopy. It is found that the mixed-phase μ c-Si:H materials with 40% crystalline volume fraction is easy to be affected by the residual boron in the reactor. The experimental results showed that a 500-nm thick μ c-Si:H covering layer or a 30-seconds of hydrogen plasma treatment can effectively reduce the boron contamination at the p/i interface. However, from viewpoint of cost reduction, the hydrogen plasma treatment is desirable for solar cell manufacture because the substrate is not moved during the hydrogen plasma treatment.  相似文献   

20.
Plasma enhanced chemical vapor deposition (PECVD) is applied to deposit boron silicate glasses (BSG) acting as boron diffusion source during the fabrication of n‐type silicon solar cells. We characterize the resulting boron‐diffused emitter after boron drive‐in from PECVD BSG by measuring the sheet resistances Rsheet,B and saturation current densities J0,B. For process optimization, we vary the PECVD deposition parameters such as the gas flows of the precursor gases silane and diborane and the PECVD BSG layer thickness. We find an optimum gas flow ratio of SiH4/B2H6= 8% and layer thickness of 40 nm. After boron drive in from these PECVD BSG diffusion sources, a low J0,B values of 21 fA/cm2 is reached for Rsheet,B = 70 Ω/□. The optimized PECVD BSG layers together with a co‐diffusion process are implemented into the fabrication process of passivated emitter and rear totally diffused (PERT) back junction (BJ) cells on n‐type silicon. An independently confirmed energy conversion efficiency of 21.0% is achieved on 15.6 × 15.6 cm2 cell area with a simplified process flow. This is the highest efficiency reported for a co‐diffused n‐type PERT BJ cell using PECVD BSG as diffusion source. A loss analysis shows a small contribution of 0.13 mW/cm2 of the boron diffusion to the recombination loss proving the high quality of this diffusion source. (© 2016 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号