首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article presents the advanced technology that has been developed by BioEnergy International of Gainesville, Florida, utilizing novel recombinant strains of bacteria developed by Lonnie Ingram of the University of Florida. The first commercial applications of these unique fermenting organisms convert 5-carbon sugars, as well as 6-carbon sugars, and oligomers of cellulose (e.g., cellobiose and cellotriose) directly to ethanol. The proposed systems that will be utilized for conversion of agricultural wastes, mixed waste papers, and pulp and paper mill waste in forthcoming commercial installations are now under design. This involves the extensive experience of Raphael Katzen Associates International, Inc. in acid hydrolysis, enzyme production, enzymatic hydrolysis, large-scale fermentation engineering, and distillation/dehydration. Specific examples of this advanced technology will be presented in different applications, namely:
1.  Conversion of the hemicellulose content of sugar cane bagasse to 5-carbon sugars by mild-acid prehydrolysis, followed by fermentation of the 5-carbon sugar extract with recombinantEscherichia coli in a commercial installation soon to be under construction in Brazil. This unique process utilizes the surplus hemicellulose fraction of bagasse not required for steam and power generation to produce ethanol, additional to that from the original cane juice, which has been converted by conventional sucrose fermentation to ethanol. The process also recovers and converts to ethanol the majority of sucrose normally lost with the bagasse fibers. Resultant beer is enriched in an innovative process to eliminate the need for incremental rectification capacity.
2.  Application of this technology to mixed waste paper in Florida, with a moderate loading of newsprint (85% mechanical wood fiber), will involve a mild-acid prehydrolysis, the partial extraction of the 5-carbon sugars produced from hemicellulose as a feedstock for propagation of the recombinantKlebsiella oxytoca bacterium. Included is a facility providing for in-house production of cellulase enzyme, as an active whole broth for direct use in simultaneous saccharification and fermentation (SSF) of the remaining cellulose and residual 5-carbon sugars to ethanol. This is followed by distillation and dehydration in the advanced commercially available low-energy recovery system.
3.  Another potential application of this unique technology involves utilization of a variety of wastes from several pulp and paper mills in close proximity, permitting collection of these wastes at low cost and reducing the considerable cost encountered in disposing of such low-energy wet waste. Based on pilot plant experiences with converting such waste by simultaneous enzymatic hydrolysis and fermentation, the same techniques will be applied as in the second case, with use of acid prehydrolysis only if the hemicellulose-derived sugars can be economically recovered. If not, acid hydrolysis will be eliminated and only the simultaneous saccharification and fermentation will be carried out, utilizing in-house-produced enzyme broth and recombinantKlebsiella oxytoca.
  相似文献   

2.
Anaerobic bacteria have been shown to be capable of converting CO, H2, and CO2 in synthesis gas to valuable products, such as acetate, methane, and ethanol. However, synthesis gas also contains small quantities of sulfur gases such as H2S and COS, that may inhibit the performance of these organisms. This paper compares the performance of several CO-utilizing and methanogenic bacteria in converting CO, CO2, and H2 to products in the presence of various concentrations of H2S and COS. The sulfur gas toxicity levels, growth, substrate uptake, and product formation for each organism are compared.  相似文献   

3.
Streptomyces setonii 75Vi2 produces an extracellular coal-solubilizing component(s) in the absence of coal. The heat stability, relatively low molecular weight, and insensitivity to proteases of the substance(s) responsible for coal solubilization indicate that the process is nonenzymatic. This report describes factors affecting the production and activity of this substance(s) and the similarity in its action to alkaline buffer solutions in solubilizing coal.  相似文献   

4.
Bioremediation bacteria with drought-resistance characteristics were selected and compared to a collection of 10 strains selected only for their bioremediation properties. Twenty-six strains were selected from dried diesel-polluted soil, and they exhibit a better level of survival during drying, compared to collection bioremediation strains (two orders of magnitude difference). The lyophilization process does not affect the strains’ ability to grow on xenobiotic compound when measured immediately after drying. However, collection bioremediation strains selected only for their bioremediation properties lose up to 80% of their properties when stored at 25°C for 15 d, but the strains selected for their drought resistance lose their properties to a lesser extent during the same period. The maximal growth rate and the rate of xenobiotic degradation of the still-active cells are not affected by the drying process.  相似文献   

5.
Recently, several microorganisms have been shown to be capable of directly solubilizing low-rank coals. This bioextract has a high molecular weight and is water soluble, but is not useful as a liquid fuel. This paper presents the results of studies to biologically solubilize coal and convert the solubilized coal into more useful compounds. Preliminary experiments have been conducted to isolate cultures for the serial biological conversion of coal into liquid fuels. Coal particles have been solubilized employing an isolate from the surface of Arkansas lignite. Natural inocula, such as sheep rumen and sewage sludge, are then employed in developing cultures for converting the bioextract into fuels. This paper presents preliminary results of experiments in coal solubilization and bioextract conversion.  相似文献   

6.
Growth inhibition in animal cell culture   总被引:6,自引:0,他引:6  
Eight independent cell lines accumulated ammonia in culture to concentrations between 1.3 and 2.9 mM. The growth inhibition of such concentrations of ammonium chloride when added to culture medium was variable. The cell lines tested could be divided into 3 groups depending on their growth response to 2 mM added NH4Cl. In the first group (293, HDF, Vero, and PQXB1/2) little (less than 14%) or no growth inhibition occurred. In the second group (McCoy and MDCK) a reduction in final cell yield of 50-60% was observed. The third group (HeLa and BHK) was most sensitive to the effects of NH4Cl with growth inhibition (greater than 75%) compared to controls. The growth inhibitory effect of added lactate up to 20 mM was negligible (less than 10%) for 3 cell lines, although one cell line (PQXB1/2) showed greater sensitivity. The interactive effects of ammonia and lactate were determined in a matrix experiment. At lactate (greater than 12 mM) and ammonia (1-4 mM), the growth inhibitory effects of the two components were synergistic. However, at low concentrations of lactate (less than 12 mM) the toxic effect of ammonia was reduced. A proposed mechanism for the sparing effect of lactate on ammonia toxicity is discussed. This may have importance in developing strategies for the optimal growth of ammonia-sensitive cell lines.  相似文献   

7.
8.
Two microbial cultures—ML-13 (aCandida sp.) and LSC (a fungal isolate from the University of Arkansas)—have been employed in the direct liquefaction of Louisiana lignite. Lignite samples were pretreated with nitric acid and microbial culture broths at elevated temperatures and pressures. Subsequent treatment with active cultures and culture derivatives resulted in significant solubilization of the lignite. Up to 50% liquefaction of pretreated coal (20% HNO3 at ambient temperature and pressure) was observed in 4 d with ML-13 cultures, whereas almost 80% liquefaction occurred in a similar time period when exposing pretreated lignite to an autoclaved, cell-free culture broth.  相似文献   

9.
Simultaneous saccharification and fermentation (SSF) processes for producing ethanol from lignocellulose are capable of improved hydrolysis rates, yields, and product concentrations compared to separate hydrolysis and fermentation (SHF) systems, because the continuous removal of the sugars by the yeasts reduces the end-product inhibition of the enzyme complex. Recent experiments using Genencor 150L cellulase and mixed yeast cultures have produced yields and concentrations of ethanol from cellulose of 80% and 4.5%, respectively. The mixed culture was employed because B.clausenii has the ability to ferment cellobiose (further reducing end-product inhibition), while the brewing yeastS. cerevisiae provides a robust ability to ferment the monomeric sugars. These experimental results are combined with a process model to evaluate the economics of the process and to investigate the effect of alternative processes, conditions, and organisms.  相似文献   

10.
Two heterotrophic denitrifying bacteria,Paracoccus denitrificans andPseudomonas denitrificans, have been shown to utilize nitric oxide (NO) as a terminal electron acceptor and succinate, yeast extract, and heat/alkali pretreated municipal sewage sludge as carbon and energy sources. Complete removal of NO (0.50%) from a feed gas sparged into the cultures was observed. It is suggested that reduction of NO may be a common feature of denitrifying bacteria and that a microbial process to dispose of NOx may be economically viable.  相似文献   

11.
The growth and oxygen consumption of a variety of thermophilic, acidophilic bacteria in the presence of thiophene-2-carboxylate (T2C) and dibenzothiophene (DBT) have been determined. T2C was extremely toxic to the acidophiles in comparison with neutrophiles, but appeared to be degraded by a heterotrophicSulfolobus- like thermophile. DBT proved to be unstable at high temperatures, even in the absence of bacteria, and was not a substrate for the thermophiles.  相似文献   

12.
Two additional electrophoretically distinct molecular forms, isoforms (iso) 2 and 3, with lectin properties were isolated fromCratylia mollis Mart, seeds (FABACEAE), by extraction with 0.15M NaCl and ammonium sulfate fractionation, followed by chromatography on Sephadex G-75 and Bio-Gel P-200 (iso 2), as well as CM-Cellulose and Sephadex G-75 (iso 3). Both isoforms were human group nonspecific and showed distinct specificity. Polyacrylamide gel electrophoresis resolved iso 2 and 3 in polypeptides of apparent mol wts 60 and 31 kDa, respectively; a distinct isoelectric focusing pattern was obtained for iso 2 and 3, under denaturing and reducing conditions.  相似文献   

13.
A potent indigenous bacillus isolate identified asBacillus cereus (RJ-30) was found to produce Cyclodextrin Glucosyl Transferase (CGTase) extracellularly. Process optimization of various fermentation parameters has been established for optimal growth of bacillus and the maximum enzyme synthesis. The organism had the highest specific growth rate (0.7μ) with a generation time of 1 h in glucose containing medium at the conditions of pH 7.0, 37°C at 300 rpm, 1.5 vvm of agitation, and aeration. At these conditions, it exhibited the maximum activity of 54 U/mL at the synthesis rate of 2.7 U/L/h. CGTase was produced from the early exponential growth and peaked during the midsporulating stage of about 16 h thereafter maintained at the same level of 50 U/mL. Saccharides containing media were better inducers than starch, and the influence of carbohydrate substrates has shown that enzyme synthesis is promoted by xylose (65 U/mL) and, more remarkably, by the supplementation of wheat bran extract in glucose medium (106 U/mL). This organism produced CGTase stably in a chemostat culturing over a period of 400 h with a maximum productivity of 5.4 kU/L/h (threefold higher than obtained in batch culturing [1.75 kU/L/h]). Comparatively, CGTase was produced by immobilized cells in a continuous fluidized bed reactor for over approx 360 h, at a relatively high dilution rate of 0.88 h−1 resulting in the productivity of 23.0 kU/L/h.  相似文献   

14.
A 1,4-β-d-glucan cellobiohydrolase (EC 3.2.1.91) and l,4-β-d-glucan glucanohydrolase (EC 3.2.1.4) were purified from the culture filtrates ofPenicillium funiculosum by using preparative isoelectric focusing. Both the enzymes were homogeneous on polyacrylamide gel with and without sodium dodecyl sulphate. The mol wt of the cellobiohydrolase and endoglucanase were 14,400 and 25,000 respectively. The purified enzymes were free of β-glucosidase activity. Acting in isolation, the cellobiohydrolase had little capacity for solubilizing Avicel or Walseth cellulose, but showed increased rates of hydrolysis when combined with endoglucanase. Cellobiose inhibition (50%) was observed in the initial rate of the hydrolysis of Walseth cellulose. It was also observed that cellobiohydrolase initiates the attack on crystalline cellulose. † NCL communication no. 3898.  相似文献   

15.
Changes in chemical composition and population development of key groups of bacteria (hydrolytic, acetogenic, and methanogenic) were measured in a laboratory scale simulation of refuse decomposition from the time of initial incubation through the methane production phase. Inhibition of methane production appeared to be characteristic of refuse decomposition. It was observed in 20 of 32 leachate recycle containers and all 19 control containers. Inhibition was not owing to an absence of indigenous microorganisms, toxic concentrations of carboxylic acids or cations, or insufficient ammonia. Characteristics of inhibited and successful containers are compared.  相似文献   

16.
Paecilomyces sp. TLi, a coal-solubilizing fungus, was shown to degrade organic sulfur-containing coal substructure compounds. Di-benzothiophene was degraded via a sulfur-oxidizing pathway to 2,2′-dihydroxybiphenyl. No further metabolism of that compound was observed. Ethyl phenyl sulfide and diphenyl sulfide were degraded to the corresponding sulfones. A variety of products were formed from dibenzyl sulfide, presumably via free radical intermediates. Diphenyl disulfide and dibenzyl disulfide were cleaved to the corresponding thiols and other single-ring products. It was concluded that degradation of organic sulfur compounds byPaecilomyces involves an oxidative attack localized at the sulfur atom.  相似文献   

17.
Amperometric enzyme electrode for glucose is described based on the incorporation of glucose oxidase (GOD) into graphite paste modified with tetracyanoquinodimethane (TCNQ). The incorporated enzyme exhibits high activity and long-term stability over the earlier TCNQ-based glucose sensor (1). The sensor provides a linear response to glucose over a wide concentration range. The response time of the sensor is 15-50 sec, and the detection limit is 0.5 mM. Stable response to the substrate was obtained during a period of 35 d. Application of the sensor in the plasma analysis is reported.  相似文献   

18.
Four 3–L aerobic biofilm reactors (ABRI, 2, 3, and 4) treating a highstrength food–processing waste water (10 g chemical oxygen demand [COD]/L) were subject to reactor liquor recirculation rates of 1, 3,15, and 30 L/h, respectively. Treatment performance in terms of COD removal rates of ABRI, 2, and 3 were similar at hydraulic loads of 2.0 g COD/L/d and below. At higher organic loads, ABR3 could achieve a COD removal rate that was over two times higher than that of ABRI and 2. ABR3 could be operated at a maximum organic load that was two times higher than that of ABRI and 2. ABR4 experienced a biofilm sloughing from the packing medium at the beginning of operation. Tracer studies showed that recirculation rate of 1 L/h resulted in a plug–flow pattern in the packed bed of the reactor. On the other hand, recirculation rate of 15 L/h, which was equivalent to recirculating the reactor liquor five times per hour, provided effective mixing in the packed bed. Superior performance of ABR3 was attributed to the effective recirculation of reactor liquor, which diluted and distributed the influent, particularly the oil and grease components.  相似文献   

19.
Butyribacterium methylotrophicum has been grown on carbon monoxide as its carbon and energy source in the presence of various surfactants that are capable of forming microbubble dispersions for the screening of surfactants for use in microbubble-sparged synthesis gas fermentations. In the range of 0–3 times the critical micelle concentration, the presence of Tween surfactants was not significantly inhibitory to growth, final cell density, and fermentation stoichiometry, although some of the Brij surfactants caused significant inhibition. As the batch fermentations entered the stationary phase both the pH and the ratio of acetate to butyrate decreased.  相似文献   

20.
Lamb pregastric lipase was purified from a commercial source using delipidation, solubilization with KSCN, acid-precipitation, pepsin-digestion, affinity chromatography with agarose-Cibacron Blue F3GA, gel filtration, and elution from a native 10% (w/v) polyacrylamide gel. The enzyme had a single subunit of 68,000 Da with maximum esterase activity when measured at pH 6.0 and 30 degrees C. The enzyme preferentially hydrolyzed short- and medium-chain (C4, C6, and C8) synthetic esters and short-chain (C4 and C6) monoacid triglycerides. The NH2-terminal sequence demonstrated high homology with gastric and lingual lipases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号