首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 255 毫秒
1.
The processes of formation of negative ions by allylsilane molecules were studied by resonanceelectron-capture mass spectrometry, and photoelectron spectra of these compounds were obtained. It was experimentally found that the overwhelming majority of fragment negative ions are produced in the energy range ~6–10 eV. It was shown that the resonance-electron-capture mass spectrum is almost entirely described by one or two series of intershell resonances due to excitation of an electron successively from several higher occupied orbitals to the lower unoccupied π molecular orbital.  相似文献   

2.
The electron ionization time-of-flight (TOF) mass spectra of a series of 5-ethoxycarbonyl-4-substituted-6-methyl-3,4-dihydropyrimidin-2(1H)-ones were studied to establish their fragmentation processes. Using the high resolution capabilities of the TOF instrument, exact masses for each fragment were determined. These data were used to infer molecular formulas and elemental compositions for all molecular ions and fragments through software interpretation and according to the established fragmentation rules the majority of ions were fully assigned. Two main fragmentation routes can be found in this work. First of them, for all the title compounds, includes the formation of three cations, by loss of R1 from the position 4, C2H4 (via a McLafferty rearrangement) from the ester group and H2O via a cyclic-six-membered transition state. The second route, for 4-aromatic compounds, consists of the formation of a cation by loss of EtCO2. Several additional fragmentations for individual compounds are proposed.  相似文献   

3.
Protonated molecules of 2,5-di-R1,R2-substituted-1,3,4-oxadiazoles lose isocyanic acid (loss of mass 43) via skeletal rearrangement. This was observed in low-energy CID mass spectra recorded by using electrospray ionisation (ESI). On electron ionisation induced decomposition these compounds also reveal complex skeletal rearrangement, consisting on N2 and CO elimination, leading to the formation of fluorene or indene type ions. It was found that abundances of fragment ions formed in these processes are in good agreement with their theoretically calculated stabilities. In the case of ESI use the fragment ion abundances were calculated in relation to [M+H]+ ion abundances and for EI use, where extensive fragmentations proceed, the sums of the abundances of [M-N2-CO]+. ions and abundances of fragment ions derived from them, were expressed as a percentage of total-ion current.  相似文献   

4.
The isomerization of the molecular ions of ethylbenzene, 7-methylcycloheptatriene and p-xylene by skeletal rearrangement prior to the formation of [C7H7]+ ions has been investigated by using 13C labelled compounds. The results obtained for ions generated by 70 eV and 12 eV electron impact, and fragmenting in the ion source, the 1st field free region and the 2nd field free region, respectively, are compared with those obtained from D labelled derivatives. It is shown that at long reaction times metastable p-xylene ions lose a methyl radical after scrambling of all C atoms and H atoms, while the unstable molecular ions in the ion source react by specific loss of one of the methyl substituents. Both unstable and metastable ethylbenzene ions fragment by two competing mechanisms, one corresponding to specific loss of the terminal methyl group, and the other involving scrambling of all C and H atoms. These results are discussed by use of a dynamic model developed for the mutual interconversion and fragmentation of the molecular ions of ethylbenzene, methylcyclo-heptatriene and p-xylene. The experimental results can be explained by an equilibrium between metastable methylcycloheptatriene ions and p-xylene ions with sufficient energy for skeletal rearrangement, while about 40% of the metastable ethylbenzene ions fragment after rearrangement to methylcycloheptatriene ions and about 60% of the ethylbenzene ions rearrange further to xylene ions before fragmentation. Metastable methylcycloheptatriene ions, mainly lose a methyl group without a skeletal rearrangement, however, because the rearranged ions are kinetically trapped as ‘stable’ xylene ions or ethylbenzene ions.  相似文献   

5.

The thermochemistry of resonant dissociative electron attachment processes for furan, thiophene, selenophene, and pyrrole molecules has been studied. The structures of the dissociation products originating from negative molecular ions at energies ranging from 2 to 6 eV have been established using the measured appearance energies of fragment ions and the known thermodynamic functions of radical and molecular dissociation products. Heats of formation and electron affinities for some radicals and molecules have been assessed by calculations and estimated experimentally. It has been concluded that the majority of the fragment ions are formedvia rearrangement processes in molecular or fragment ions.

  相似文献   

6.
The electron impact (EI) mass spectrum of allyl phenyl ether (1) includes an ion at m/z 106 that is formed mainly by the loss of CO from the molecular ion, as supported by high resolution and MS/MS data. The formation of the [M - CO](+) ion from 1 can be explained in terms of the Claisen rearrangement of 1 after ionization in the ion source of the mass spectrometer. Similarly, allyl phenyl sulfide (2) and allyl phenyl selenide (3) showed characteristic ions corresponding to [M - CH(3)](+), [M - XH](+) (X = S or Se) and [M - C(2)H(4)](+.), and the formation of these ions are explained via Claisen rearrangement of 2 and 3 in the ion source of the mass spectrometer resulting in a mixture of rearrangement products. The formation of molecular ions of 2-allyl thiophenol and 2-allyl selenophenol as intermediates, that cannot be isolated as the neutrals from the solution phase Claisen rearrangement of 2 and 3, respectively, is clearly indicated in the gas phase. The mass spectra of the rearrangement products obtained from the solution phase reaction were also consistent with the proposal of formation of these products in the ion source of the mass spectrometer. The formation of characteristic fragment ions attributed to the Claisen rearrangement products are also evident in the collision induced dissociation spectra of the corresponding molecular ions. Copyright 2000 John Wiley & Sons, Ltd.  相似文献   

7.
A series of α-chloro- and α-bromoketimines compounds (1-9) with different substituents at the α-position and at the imino group has been investigated by electron impact mass spectrometry as possible precursors of the correspondingly substituted α-imidoyl carbenium ion, an important class of destabilized carbenium ions. The main fragmentation of the molecular ions of compounds, 1-9 in the ion source corresponds to an α-cleavage at the imino group; however, fragment ions are also formed by loss of the α-halo substituent. These fragment ions correspond at least formally to α-imidoyl carbenium ions. Their further reactions in dependence on the type of substituents at the imino group and at the α-C atom, were studied by mass-analysed ion kinetic energy and collisional activation mass spectrometry. The results agree with the initial formation of destabilized α-imidoyl carbenium ions but indicate an easy rearrangement of these ions in the presence of suitable alkyl substituents by 1,2- and 1,4-hydrogen shifts to more stable isomers.  相似文献   

8.
Doubly charged ion mass spectra have been obtained for 11 organophosphorus compounds. Methane has been used as a target gas to increase the probability of single electron transfer collisions in the first field-free region of an Hitachi RMU-7L mass spectrometer. In general, the spectra of organophosphorus compounds do not exhibit molecular ions but are dominated by fragment ions, many of which must be formed by rearrangement processes. A geometry-optimized self-consistent field molecular orbital method has been employed to compute energies and structural parameters for prominent ions. In addition, a diabatic curve crossing model has been used to examine the single electron transfer reactions responsible for intense ions in the doubly charged ion mass spectra. Appearance energies measured for ions prominent in the 2E spectra of organophosphorus compounds have ranged from 23 to 38 eV.  相似文献   

9.
Negative ion resonance states of ammonia are accessed upon capture of electrons with energy 5.5 eV and 10.5 eV, respectively. These resonance states dissociate to produce H(-) and NH(2)(-) fragment anions via different fragmentation channels. Using the velocity slice imaging technique, we measured the angular and kinetic energy distribution of the fragment H(-) and NH(2)(-) anions with full 0-2π angular coverage across the two resonances. The scattered H(-) ions at both resonances show variation in their angular distribution as a function of the kinetic energy indicating geometric rearrangement of NH(3)(-*) ion due to internal excitations and differ from the equilibrium geometry of the neutral molecule. The second resonance at 10.5 eV shows strong forward-backward asymmetry in the scattering of H(-) and NH(2)(-) fragment ions. Based on the angular distributions of the H(-) ions, the symmetry of the resonances at 5.5 eV and 10 .5 eV are determined to be A(1) and E, respectively, within C(3v) geometry.  相似文献   

10.
The McLafferty rearrangement is an extensively studied fragmentation reaction for the odd‐electron positive ions from a diverse range of functional groups and molecules. Here, we present experimental and theoretical results of 12 model compounds that were synthesized and investigated by GC‐TOF MS and density functional theory calculations. These compounds consisted of three main groups: carbonyls, oximes and silyl oxime ethers. In all electron ionization mass spectra, the fragment ions that could be attributed to the occurrence of a McLafferty rearrangement were observed. For t‐butyldimethylsilyl oxime ethers with oxygen in a β‐position, the McLafferty rearrangement was accompanied by loss of the t‐butyl radical. The various mass spectra showed that the McLafferty rearrangement is relatively enhanced compared with other primary fragmentation reactions by the following factors: oxime versus carbonyl, oxygen versus methylene at the β‐position and ketone versus aldehyde. Calculations predict that the stepwise mechanism is favored over the concerted mechanism for all but one compound. For carbonyl compounds, C–C bond breaking was the rate‐determining step. However, for both the oximes and t‐butyldimethylsilyl oxime ethers with oxygen at the β‐position, the hydrogen transfer step was rate limiting, whereas with a CH2 group at the β‐position, the C–C bond breaking was again rate determining. n‐Propoxy‐acetaldehyde, bearing an oxygen atom at the β‐position, is the only case that was predicted to proceed through a concerted mechanism. The synthesized oximes exist as both the (E)‐ and (Z)‐isomers, and these were separable by GC. In the mass spectra of the two isomers, fragment ions that were generated by the McLafferty rearrangement were observed. Finally, fragment ions corresponding to the McLafferty reverse charge rearrangement were observed for all compounds at varying relative ion intensities compared with the conventional McLafferty rearrangement. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
The alkylation of phenol with methanol on HY and CsY/CsOH catalysts was studied in situ under static conditions by 13C NMR spectroscopy. Attention was largely given to the identification of intermediate compounds and mechanisms of anisole, cresol, and xylenol formation. The mechanisms of phenol methylation were found to be different on acid and basic catalysts. The primary process on acid catalysts was the dehydration of methanol to dimethyl ether and methoxy groups. This resulted in the formation of anisole and dimethyl ether, the ratio between which depended on the reagent ratio, which was evidence of similar mechanisms of their formation. Subsequent reactions with phenol gave cresols and anisoles. Cresols formed at higher temperatures both in the direct alkylation of phenol and in the rearrangement of anisole. The main alkylation product on basic catalysts was anisole formed in the interaction of phenolate anions with methanol; no cresol formation was observed. The deactivation of acid catalysts was caused by the formation of condensed aromatic hydrocarbons that blocked zeolite pores. The deactivation of basic catalysts resulted from the condensation of phenol and formaldehyde with the formation of phenol-formaldehyde resins.  相似文献   

12.
Mass Spectra of some Arsenic and Arsenious Esters. Kinetic Study of their Fragmentation Reactions The mass spectra of some arsenic and arsenious esters are reported. Based on a mechanistic interpretation of the kinetic of competitive and consecutive reactions correlations between mass spectra and molecular structure have been found. Conclusions: (a) molecular ions are not or very small observable; (b) fragment ions with trivalent and fivevalent arsenic (e.g. As(OCH3)) are very abundant; (c) the first fragmentation reaction of the molecular ion is usually a simple cleavage, the second is elimination of a neutral by a rearrangement; (d) rearrangement reactions exhibit less activation energies and less frequency factors than simple cleavages, this is the reason for the differences between 70 eV and 9 eV spectra; (e) C? C cleavage in the ethoxy compounds is favoured because of the formation of mesomeric onium ions; (f) some fragmentations by electron impact are analogous to pyrolytic decompositions; (g) in the fragment ions of OAs(OCH2C6H5)3 the charge is placed on the aromatic ring.  相似文献   

13.
Multiple-stage mass spectrometry involving consecutive collision-activated dissociation reactions was used to examine the structures of fragment ions commonly formed on electron ionization of organophosphorus esters. The compounds studied include several aryl thiophosphates, some of which are analogs of common pesticides. Energy-resolved collisionactivated dissociation experiments allow the dissociation of the molecular ions of these compounds in such a manner that only a few fragment ions dominate the spectrum. An abundant fragment ion of m/z 109, formed from all of the compounds studied, can have at least four different stable structures: (CH3O)2PO+, CH3CH2OP(O)OH+, CH2 =CHOP(H)(OH)2 +, and (CH2O)2P(H)OH+. The structure of the fragment ion of m/z 109 was found to reflect the phosphorus-containing part of the compounds studied. Another abundant fragment ion obtained for all the aryl esters studied is structurally characteristic of the aromatic moiety of the molecule. This fragment ion is the result of a complex rearrangement involving transfer of an alkylene group to the aromatic ring from the phosphoruscontaining part of the molecular ion. The utility of these fragment ions in the structural characterization of unknown organophosphorus esters is discussed.  相似文献   

14.
This paper, describing electron ionization mass spectral fragmentation of some hydroxycarboxylic and oxocarboxylic acid trimethylsilyl derivatives, focuses on the formation of fragment ions resulting from the interactions between the two functionalities of these compounds. These interactions result in the formation of fragment ions at [CH2=C(OTMS)2]+., [CH2=CHC(OTMS)=OTMS]+, [M-31]+, [M-105]+, and [M-RCHO]+. in the case of hydroxycarboxylic acid trimethylsilyl derivatives of formula RCHOTMS(CH2)nCOOTMS and at [RC(OTMS)=CH2]+., [RC(=OTMS)CH=CH2]+, and [M-RC(=O)CH2]+ in the case of oxocarboxylic acid trimethylsilyl esters of formula RC(=O)(CH2)nCOOTMS. Some of these fragmentations appeared to be sufficiently specific to be used to characterize these compounds. Several fragmentation pathways involving trimethylsilyl and hydrogen transfers were proposed to explain the formation of these different fragment ions and were substantiated by deuterium labeling.  相似文献   

15.
Negative ion formation in the three perfluoroethers (PFEs) diglyme (C(6)F(14)O(3)), triglyme (C(8)F(18)O(4)) and crownether (C(10)F(20)O(5)) is studied following electron attachment in the range from ~0 to 15?eV. All three compounds show intense low energy resonances at subexcitation energies (<3?eV) decomposing into a variety of negatively charged fragments. These fragment ions are generated via dissociative electron attachment (DEA), partly originating from sequential decompositions on the metastable (μs) time scale as observed from the MIKE (metastable induced kinetic energy) scans. Only in perfluorocrownether a signal due to the non-decomposed parent anion is observed. Additional and comparatively weaker resonances are located in the energy range between ~10 and 17?eV which preferentially decompose into lighter ions. It is suggested that specific features of perfluoropolyethers (PFPEs) relevant in applications, e.g., the strong bonding to surfaces induced by UV radiation of the substrate or degradation of PFPE films in computer hard disc drives can be explained by their pronounced sensitivity towards low energy electrons.  相似文献   

16.
Ten trisdithiocarbamate compounds of arsenic, antimony and bismuth are studied by mass spectrometry. Their fragmentation modes and the fragment ions with common structures are discussed. The molecular ion peaks were not observed in all compounds. The highest mass number fragment ions, which might be generated directly from the molecular ions, are those with less mass units, equal to a dithiocarbamate group; signifing a facile detaching of one of the dithiocarbamato groups. The observed peaks are attributed, either to electron impact or to pyrolytic decomposition. The most prominent peaks, in the higher mass number region of all the spectra, correspond to polynuclear compounds of the general formula MnSm, where M = As, Sb, Bi; S = sulfur; n = 1, 2, 3, 4 and m = 0, 1, 2, 3, 4, 5.  相似文献   

17.
During our characterization of plicatamide 1, a modified octapeptide: Phe-Phe-His-Leu-His-Phe-His-dc deltaDOPA (where dc deltaDOPA = decarboxy-(E)-alpha,beta-dehydro-3,4-dihydroxyphenylalanine) from the blood cells of the ascidian Styela plicata, we noted a series of fragment ions from the [M + H]+ ion which could not be assigned. There was no evidence in the 1H NMR spectrum to support an alternative molecular structure and the series of fragment ions were not present in the tandem mass spectrometry analysis of the [M + Na]+ ion. In addition, there was no evidence that the sample was a mixture of isobaric compounds. We propose that an unusual C-terminal to N-terminal rearrangement is responsible for the series of fragment ions from the [M + H]+ ion. This rearrangement was not observed in peptide analogs of plicatamide which did not contain the dc deltaDOPA at the C-terminus suggesting that this moiety is critical for the rearrangement. The proposed reaction is analogous to that recently reported by Vachet et al. involving a fragment ion formed from leucine enkephalin.  相似文献   

18.
The photochemistry of (η(6)-anisole)Cr(CO)(3) and (η(6)-thioanisole)Cr(CO)(3) was investigated by picosecond time-resolved infrared spectroscopy in n-heptane solution at 298 K. Two independent excited states are populated following 400 nm excitation of each of these complexes. An excited state with some metal-to-CO charge-transfer character is responsible for the CO-loss process, which is slow compared to CO-loss from Cr(CO)(6). Observed first order rate constants of 1.8 × 10(10) s(-1) and 2.5 × 10(10) s(-1) were obtained for the anisole and thioanisole complexes, respectively. The second excited state has metal-to-arene charge transfer character and results in a haptotropic shift of the thioanisole ligand. DFT calculations characterized the excited states involved and the nature of the haptotropic shift intermediate observed for the thioanisole species.  相似文献   

19.
Using a crossed electron/molecule beam technique the dissociative electron attachment (DEA) to gas phase L-valine, (CH(3))(2)CHCH(NH(2))COOH, is studied by means of mass spectrometric detection of the product anions. Additionally, ab initio calculations of the structures and energies of the anions and neutral fragments have been carried out at G2MP2 and B3LYP levels. Valine and the previously studied aliphatic amino acids glycine and alanine exhibit several common features due to the fact that at low electron energies the formation of the precursor ion can be characterized by occupation of the pi* orbital of the carboxyl group. The dominant negative ion (M-H)(-) (m/Z=116) is observed at electron energies of 1.12 eV. This ion is the dominant reaction product at electron energies below 5 eV. Additional fragment ions with m/Z=100, 72, 56, 45, 26, and 17 are observed both through the low lying pi* and through higher lying resonances at about 5.5 and 8.0-9.0 eV, which are characterized as core excited resonances. According to the threshold energies calculated here, rearrangements play a significant role in the formation of DEA fragments observed from valine at subexcitation energies.  相似文献   

20.
The electron-impact (EI) mass spectra of a series of O-alkyl methylphosphonothionocyanidates were studied for Chemical Weapons Convention (CWC) purposes. General EI fragmentation pathways were constructed and discussed, and collision-induced dissociation studies of the major EI ions were performed to confirm proposed fragment structures by analyzing fragment ions of deuterated analogs and by use of density functional theory (DFT) calculations. Thiono–thiolo rearrangement, McLafferty-type rearrangement, and a previously unknown intramolecular electrophilic aromatic substitution reaction were observed and confirmed. The study also focused on differentiation of isomeric compounds. Retention indices for all compounds, and an electrophilicity index for several compounds, are reported and interpreted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号