首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The flow of a fluid of grade three between heated parallel plates is examined for two cases. In the first instance we postulate constant heat flux at the walls and via a similarity transformation calculate the Nusselt number as a function of both Γ, the parameter controlling viscous dissipation, and Λ, the non-Newtonian parameter. In the second case we restrict the temperature to change only normal to the plates; solutions in this case are obtained for two temperature-viscosity models, μ = μ(θ).  相似文献   

2.
The problem of two-dimensional time-dependent viscous fluid flow in a clearance between transversely and longitudinally moving rigid planes is considered. Non-self-similar solutions of this problem are found within the framework of the Hiemenz class of exact solutions of hydrodynamic equations and the admissible laws of motion of a movable plane are described.  相似文献   

3.
An exact solution for the flow of an incompressible viscoelastic fluid between two infinitely extended parallel plates, due to the harmonic oscillations of the upper plate and the impulsively started harmonic oscillations of the lower plate from rest, in the respective planes of the plates, has been obtained. The momentum transfer towards the central region and the skin friction of the lower plate are found to be greater for the viscoelastic fluid than that for viscous fluid. The effect of out-of-phase oscillations of the plates with different amplitudes on the flow characteristics has also been investigated.  相似文献   

4.
Transient non-Darcy free convection between two parallel vertical plates in a fluid saturated porous medium is investigated using the generalized momentum equation proposed by Vafai and Tien. The effects of porous inertia and solid boundary are considered in addition to the Darcy flow resistance. Exact solutions are found for the asymptotic states at small and large times. The large time solutions reveal that the velocity profiles are rather sensitive to the Darcy number Da when Da<1. It has also been found that boundary friction alters the velocity distribution near the wall, considerably. Finite difference calculations have also been carried out to investigate the transient behaviour at the intermediate times in which no similarity solutions are possible. This analytical and numerical study reveals that the transient free convection between the parallel plates may well be described by matching the two distinct asymptotic solutions obtained at small and large times.Nomenclature C empirical constant for the Forchheimer term - f velocity function for the small time solution - F velocity function for the large time solution - g acceleration due to gravity - Gr* micro-scale Grashof number - H a half distance between two infinite plates - K permeability - Nu Nusselt number - Pr Prandtl number - t time - T temperature - u, v Darcian velocity components - x, y Cartesian coordinates - effective thermal diffusivity - coefficient of thermal expansion - porosity - dimensionless time - similarity variable - dimensionless temperature - viscosity - kinematic viscosity - density - the ratio of heat capacities  相似文献   

5.
This paper studies exact solutions of the Navier-Stokes equations for a layer between parallel plates the distance between which increases proportionally to the square root of time. A countable set of exact solutions and their derived countable set of continuous families of exact solutions are obtained. It is shown that certain intervals of the Reynolds parameter have two solutions and some of them one solution.  相似文献   

6.
7.
The unsteady squeezing and extrusion of a viscous fluid between two parallel plates of constant temperature is examined. The dimensionless extrusion parameter,=U/V, is introduced to represent the effects of the extrusion on the squeezing velocities. The squeezing parameter=VH/, represents the effect of the inertial forces on heat and fluid flow characteristics. It is found that increasing the extrusion parameter will increase both the velocity and the heat transfer rates to the viscous fluid. Increasing the squeezing parameter had also decreased the fluid velocity and enhanced heat transfer rates. Increasing the viscous effects or the Eckert number E=U2/cp (TETs) heated the fluid and consequently decreased the heat transfer rates. Different velocity profiles, temperature profiles, and Nusselt numbers against various dimensionless groups are drawn.  相似文献   

8.
Summary The flow between two parallel plates (rectangular or circular) approaching or receding from each other symmetrically is analysed. The Xavier-Stokes equations have been transformed into an ordinary differential equation using a similarity transformation and the resulting equations are solved numerically. Results for the velocity components, pressure distribution and shearing stress on the wall are presented. In the case of squeezing flow between two circular plates the load supporting capacity of the upper plate has been calculated.
Quetschströmung zwischen parallelen Platten
Übersicht Untersucht wird die Strömung zwischen zwei parallelen Rechteck- bzw. Kreisplatten, die sich einander nähern oder entfernen. Die Navier-Stokes-Gleichungen werden durch eine Ähnlichkeitstransformation in eine gewöhnliche Differentialgleichung überführt. Die Lösung erfolgt numerisch. Ergebnisse für die Geschwindigkeitskomponenten, die Druckverteilung und die Wandschubspannung werden vorgestellt. Für die Quetschströmung zwischen zwei Kreisplatten wird die Tragkraft bestimmt.
  相似文献   

9.
The transfer mechanism of momentum from the boundaries into the interior of a viscoelastic fluid is examined in the case when the boundary consists of two parallel plates.Special emphasis is given to the case of a Maxwellian fluid. It is seen that an increase in the azimuthal angular velocity at the boundaries progresses into the interior of the liquid in the form of a velocity discontinuity wave. Simultaneously, an axial circulatory flow pumps liquid from the low rotation region near the middle plane into the high rotation region near the boundaries. Detailed calculations are given for the intial stage of evolution.  相似文献   

10.
If the maximal friction law is applied, then some generalizations of the Prandtl solution for the compression of a plastic layer between rough plates do not exist. In particular, this pertains to the viscoplastic solutions obtained earlier. In the present paper, we show that these solutions do not exist because of the properties of the model material and introduce a model for which this solution can be constructed. The obtained solution is singular. In particular, the equivalent strain rate tends to infinity as the friction surface is approached, and its asymptotic behavior exactly coincides with that arising in the classical solution. The obtained solution is illustrated by numerical examples, which, in particular, show that an extremely thin boundary layer may arise near the friction surfaces.  相似文献   

11.
The fractional calculus approach in the constitutive relationship model of a generalized second grade fluid is introduced. Exact analytical solutions are obtained for a class of unsteady flows for the generalized second grade fluid with the fractional derivative model between two parallel plates by using the Laplace transform and Fourier transform for fractional calculus. The unsteady flows are generated by the impulsive motion or periodic oscillation of one of the plates. In addition, the solutions of the shear stresses at the plates are also determined. The project supported by the National Natural Science Foundation of China (10372007, 10002003) and CNPC Innovation Fund  相似文献   

12.
A viscous fluid is squeezed between two parallel elliptic plates. If the gap width varies as the inverse square root of time, exact similarity equations may be obtained. The nonlinear two-point boundary value problem is then solved by perturbation theory and also integrated numerically by a new homotopy method. Nonunique solutions exist for the separation of the plates. This paper shows two-dimensional or axisymmetric boundary conditions may yield non-two-dimensional and nonaxisymmetric solutions.  相似文献   

13.
An analysis is presented for laminar radial flow due to an oscillating source between parallel plates. The source strength varies according to Q=Q 0 cos ωt, and the solution is in the form of an infinite series in terms of a reduced Reynolds number, R a * =Q 0/4πνa/(r/a)2. (Q 0 = amplitude of source strength, ω = frequency, a = half distance between plates, r = radial coordinate, t = time, and ν = kinematic viscosity.) The results are valid for small values of R a * and all values of the frequency Reynolds number, α=ωa 2/ν. The effects of the parameters R a * and α are discussed.  相似文献   

14.
15.
Numerical simulations have been undertaken for the creeping pressure-driven flow of a Bingham plastic past a cylinder kept between parallel plates. Different gap/cylinder diameter ratios have been studied ranging from 2:1 to 50:1. The Bingham constitutive equation is used with an appropriate modification proposed by Papanastasiou, which applies everywhere in the flow field in both the yielded and practically unyielded regions. The emphasis is on determining the extent and shape of yielded/unyielded regions along with the drag coefficient for a wide range of Bingham numbers. The present results extend previous simulations for creeping flow of a cylinder in an infinite medium and provide calculations of the drag coefficient around a cylinder in the case of wall effects.  相似文献   

16.
The Hall and ion-slip effects on fully developed electrically conducting couple stress fluid flow between vertical parallel plates in the presence of a temperature dependent heat source are investigated. The governing non-linear partial differential equations are transformed into a system of ordinary differential equations using similarity transformations. The resulting equations are then solved using the homotopy analysis method (HAM). The effects of the magnetic parameter, Hall parameter, ion-slip parameter and couple stress fluid parameter on velocity and temperature are discussed and shown graphically.  相似文献   

17.
The fractional calculus approach in the constitutive relationship model of viscoelastic fluid is introduced. A generalized Maxwell model with the fractional calculus was considered. Exact solutions of some unsteady flows of a viscoelastic fluid between two parallel plates are obtained by using the theory of Laplace transform and Fourier transform for fractional calculus. The flows generated by impulsively started motions of one of the plates are examined. The flows generated by periodic oscillations of one of the plates are also studied.  相似文献   

18.
The flow of a viscous fluid in the narrow gap between two rapidly rotating coaxial cones has been examined in [1]. A similar motion takes place between the plates of a separator in various branches of engineering for the separation of emulsions and clarification of suspensions. The laminar flow regime is necessary for normal operation of the plate separator. The present paper studies the hydrodynamic stability of the interplate flow and suggests a specific criterion which is consistent with the practice of the design and operation of separators and which has a simple physical meaning.  相似文献   

19.
Squeeze flow in the gap between non-parallel circular plates of radius R is discussed. The test material is assumed to be a power-law fluid, with a no-slip boundary condition at the plates. If the mean separation between the plates is h, and the angle of inclination between the plates is ? ? h/R, the force on the plates is perturbed only at O(?2) and is increased by less than 10% if ? < 0.35h/R. A torque O(?) tends to return the plates to a parallel configuration.  相似文献   

20.
The problem of heat transfer between two infinite parallel plates is investigated on the basis of equations obtained by averaging the Boltzmann kinetic equation with respect to the transverse velocity. A numerical solution of the problem is accomplished for a temperature ratio between the plates of T0/T1=1/4 and for various Knudsen numbers.Moscow. Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 87–91, January–February, 1972.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号