首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two quantitative schlieren methods are assessed and compared: calibrated color schlieren (CCS) and background oriented schlieren (BOS). Both methods are capable of measuring the light deflection angle in two spatial directions, and hence the projected density gradient vector field. Spatial integration using the conjugate gradient method returns the projected density field. To assess the performance of CCS and BOS, density measurements of a two-dimensional benchmark flow (a Prandtl-Meyer expansion fan) are compared with the theoretical density field and with the density inferred from PIV velocity measurements. The methods performance is also evaluated a priori from an experiment ray-tracing simulation. The density measurements show good agreement with theory. Moreover, CCS and BOS return comparable results with respect to each other and with respect to the PIV measurements. BOS proves to be very sensitive to displacements of the wind tunnel during the experiment and requires a correction for it, making it necessary to apply extra boundary conditions in the integration procedure. Furthermore, spatial resolution can be a limiting factor for accurate measurements using BOS. CCS suffers from relatively high noise in the density gradient measurement due to camera noise and has a smaller dynamic range when compared to BOS. Finally the application of the two schlieren methods to a separated wake flow is demonstrated. Flow features such as shear layers and expansion and recompression waves are measured with both methods.  相似文献   

2.
We examine the dynamics of a high-speed shock-induced flow near the open end of a shock tube using the particle image velocimetry (PIV) and the background oriented schlieren (BOS) methods along with two- and three-dimensional numerical simulations. In experiments, planar shock waves (\(M=1.3\)–1.6) are discharged from a rectangular (\(24\,\hbox {mm} \times 48\,\hbox {mm}\)) low-pressure section of a shock tube open to the atmosphere. Due to the rectangular exit geometry, the resulting flow is highly three-dimensional and, thus, more complicated, compared to well-studied circular/axisymmetric geometries. The study focuses on the spatio-temporal flow structure up to 1 ms after the shock wave diffraction. PIV and BOS visualization techniques share the same post-processing principle, and the iterative multi-step cross-correlation algorithm applied in the PIV software is adapted here for the calculation of background pattern displacement on the BOS images. Particular attention is given to the resolution of flow regions where sharp gradients are present, such as a diffracted shock front or embedded shocks. Computational fluid dynamic simulations of the problem are also conducted to validate the experimental results and methods and to gain more insight into the three-dimensional flow dynamics. PIV and BOS images are found to be consistent with the corresponding numerical flow visualizations.  相似文献   

3.
The background oriented schlieren method (BOS) allows for accurate flow measurements with a simple experimental configuration. To estimate per-pixel displacement vectors between two images, BOS systems traditionally borrow window-based algorithms from particle image velocimetry. In this paper, we evaluate the performance of more recent optical flow methods in BOS settings. We also analyze the impact of different background patterns, suggesting the use of a pattern with detail at many scales. Experiments with both synthetic and real datasets show that the performance of BOS systems can be significantly improved through a combination of optical flow algorithms and multiscale background.  相似文献   

4.
Experimental measurements of shock wave propagation from explosions of C4 are presented. Each test is recorded with a high-speed digital video camera and the shock wave is visualized using background-oriented schlieren (BOS). Two different processing techniques for BOS analysis are presented: image subtraction and image correlation. The image subtraction technique is found to provide higher resolution for identifying the location of a shock wave propagating into still air. The image correlation technique is more appropriate for identifying shock reflections and multiple shock impacts in a region with complex flow patterns. The optical shock propagation measurements are used to predict the peak overpressure and overpressure duration at different locations and are compared to experimental pressure gage measurements. The overpressure predictions agree well with the pressure gage measurements and the overpressure duration prediction is within an order of magnitude of the experimental measurements. The BOS technique is shown to be an important tool for explosive research which can be simply incorporated into typical large-scale outdoor tests.  相似文献   

5.
The applicability of the particle image velocimetry (PIV) and the background-oriented schlieren (BOS) techniques in the high-enthalpy shock tunnel G?ttingen of the German Aerospace Center, DLR is demonstrated. As a part of this feasibility study two different experiments are performed. The velocity field past a wedge in a Mach 6 flow at a total specific enthalpy of 1.5 MJ/kg is determined by means of PIV and the results are compared to numerical predictions. The BOS technique is applied to investigate the density field in the shock layer of a sphere at 12 and 22 MJ/kg total specific enthalpies. Using a ray tracer method, the BOS results are compared to the data obtained by corresponding numerical computations.  相似文献   

6.
T. Mizukaki 《Shock Waves》2010,20(6):531-537
In this article, we attempt to validate flow visualization using the high-speed background-oriented schlieren (HiBOS) method, which is the BOS technique combined with a high-speed video camera as the recording device in the experiment. The method has been applied to shock-induced flow near the open end of a shock tube. Three incident shock Mach numbers were examined so that the BOS measurements could be compared with results given in the literature of particle-image velocimetry (PIV) measurements. Using the HiBOS technique, we were able to clearly view developing, compressible vortex rings and diffracted shock waves discharged from the open end of the shock tube. From the BOS images, we extracted the history of the propagation velocity, the diameter of the vortex ring, and the diameter of the vortex core, all of which agree with the corresponding PIV values reported in the literature.  相似文献   

7.
Experiments to demonstrate the use of the background-oriented schlieren (BOS) technique in hypersonic impulse facilities are reported. BOS uses a simple optical set-up consisting of a structured background pattern, an electronic camera with a high shutter speed and a high intensity light source. The visualization technique is demonstrated in a small reflected shock tunnel with a Mach 4 conical nozzle, nozzle supply pressure of 2.2 MPa and nozzle supply enthalpy of 1.8 MJ/kg. A 20° sharp circular cone and a model of the MUSES-C re-entry body were tested. Images captured were processed using PIV-style image analysis to visualize variations in the density field. The shock angle on the cone measured from the BOS images agreed with theoretical calculations to within 0.5°. Shock standoff distances could be measured from the BOS image for the re-entry body. Preliminary experiments are also reported in higher enthalpy facilities where flow luminosity can interfere with imaging of the background pattern. A version of this paper was presented at the 25th International Symposium on Shock Waves in Bangalore in July 2005.  相似文献   

8.
Evaluation of aero-optical distortion effects in PIV   总被引:1,自引:0,他引:1  
Aero-optical distortion effects on the accuracy of particle image velocimetry (PIV) are investigated. When the illuminated particles are observed through a medium that is optically inhomogeneous due to flow compressibility, the resulting particle image pattern is subjected to deformation and blur. In relation to PIV two forms of error can be identified: position error and velocity error. In this paper a model is presented that describes these errors and particle image blur in relation to the refractive index field of the flow. In the case of 2D flows the model equations can be simplified and, furthermore, the background oriented schlieren technique (BOS) can be applied as a means to assess and correct for the optical error in PIV. The model describing the optical distortion is validated by both computer simulation and real experiments of 2D flows. Two flow features are considered: one with optical distortion normal to the velocity (shear layer) and one with optical distortion in the direction of the flow (expansion fan). Both simulation and experiments demonstrate that the major source for the velocity error is the second derivative of the refractive index in the direction of the velocity vector. The aero-optical distortion effect is less critical for shearing interfaces in comparison with compression/expansion fronts, the most critical case being represented by shock waves. Based on the results from the simulated experiments, it is concluded that for the 2D flow case the BOS method allows a measurement of the mean velocity error in PIV and can reduce it to a large extent.  相似文献   

9.
In this variant of schlieren flow visualization a tricolored filter pattern made up of concentric rings is used instead of a knife edge at the cut-off plane. The method is particularly useful in combustion studies since it provides the range necessary to visualize flames while retaining the sensitivity necessary to detect fluid motion in the surrounding gasses. That utility is demonstrated in this paper in terms of basic principles and by application. Photographs presented include images of both premixed and diffusion flames in an unsteady swirling flow within a cylinder.  相似文献   

10.
This paper presents the application of optical measurement techniques in dense-gas flows in a heavy-gas channel to determine planar two-component (2C) velocity profiles and two-dimensional (2D) temperature profiles. The experimental approach is rather new in this area, and represents progress compared with the traditional techniques based on thermocouple measurements. The dense-gas flows are generated by the evaporation of liquid nitrogen. The optical measurement of both the velocity and density profiles is accomplished by the implementation of particle image velocimetry (PIV) and background-oriented schlieren (BOS) systems. Supplemental thermocouple measurements are used as independent calibrations to derive temperatures from the density data measured with the BOS system. The results obtained with both systems are used to quantify the dilution behavior of the propagating cloud through a global entrainment parameter . Its value agrees well with the results obtained by earlier studies.  相似文献   

11.
Three-dimensional density information of a double free air jet was acquired using optical tomography. The projections of the density field were measured using the background oriented schlieren method (BOS). Preceding the free jet measurements, the sensitivity, accuracy and resolution of the BOS method were investigated. The sensitivity depends mostly on the focal length of the lens used, the relative position of the object between camera and background and the smallest detectable shift in the image plane. The accuracy was found to be sufficiently high to apply a tomographic reconstruction process. The resolution is determined by the transfer function of the BOS-method. It is not constant and depends on the size of the interrogation windows used for the cross-correlation-algorithm. The reconstruction of the free jet was computed, using filtered back projection. The reconstructed 3D density field shows with good resolution the typical diamond structure of the density distribution in under-expanded free jets.  相似文献   

12.
This study describes an attempt of quantitative visualization of open-air explosions via the background-oriented schlieren method (BOS). The shock wave propagation curve and overpressure distribution were extracted from the obtained images and compared with the results of the numerical analysis. The potential of extracting the density distribution behind the shock front is also demonstrated. Two open-air explosions were conducted; one with a $36$ -kg emulsion explosive and the other with a $7.89$ -kg composition C4 explosive. A high-speed digital video camera was used with a frame rate of $10{,}000\,\mathrm{Hz}$ and a pixel size of $800 \times 600$ . A natural background, including trees and grass, was used for BOS measurements instead of the random dots used in a laboratory. The overpressure distribution given by the passing shock was estimated from the visualized images. The estimated overpressures agreed with the values recorded by pressure transducers in the test field. The background displacement caused by light diffraction inside the spherical shock waves was in good agreement, except at the shock front. The results shown here suggest that the BOS method for open-air experiments could provide increasingly better quantitative and conventional visualization results with increasing spatial resolution of high-speed cameras.  相似文献   

13.
This survey presents a unified view of the history, rationale, applications, and current status of colour-coding schlieren optical techniques, based on an extensive literature review. The characteristics and advantages of this unique flow visualization tool are discussed in terms of one- and two-dimensional colour-coding, qualitative and quantitative visualisations, and system sensitivity, range and resolution. In particular, the use of matched spatial filters to tailor the schlieren optics for specific applications is stressed. A wide range of past applications in fluid flow and heat transfer is surveyed. Connections are drawn among these applications and some new applications are discussed.  相似文献   

14.
A specially adapted schlieren system is used to generate fluctuating signals which respond strongly to large scale coherent components of a turbulent mixing jet flow and which have a relatively reduced response to random disturbances. The schlieren signals also provide a direct indication of the presence of vortex-like structures in the turbulent mixing layers by virtue of the phase relationship of the schlieren signals to the pressure field. This system gives a clear resolution of the fluctuating periodic effects associated with vortex structures in the flow from a choked convergent nozzle. It has thus been possible to determine that vortex-like eddies are associated with the feedback screech mechanism, and also generate periodic disturbances due to their passage through the diamond shaped wave structure in the flow. The regular disturbances in the flow move at 0.77 of the fully expanded flow velocity. Phase spectral observations demonstrate clearly the vortex like structure of coherent disturbances in the flow by virtue of the quadrature phase relation between the schlieren and microphone signals. Movement of the sensing microphone in the pressure field external to the flow shows disturbance propagation at the acoustic velocity, and also shows that disturbances at Strouhal numbers above 0.7 emanating from the inner mixing zone can be identified by an additional time delay to reach the microphone and only influence the microphone when it is located downstream of the flow sensing schlieren system due to confinement of pressure disturbances within Mach cones of the flow.  相似文献   

15.
The schlieren interferograms used to be analyzed in a qualitative way. In this paper, by means of the powerful computational ability and the large memory of computer; the image processing method is investigated for the digitalization of an axisymmetric schlieren interferogram and the determination of the density field. This method includes the 2-D low-pass filtering, the thinning of interferometric fringes, the extraction of physical information and the numerical integration of the density field. The image processing results show that the accuracy of the quantitative analysis of the schlieren interferogram can be improved and a lot of time can be saved in dealing with optical experimental results. Therefore, the algorithm used here is useful and efficient.  相似文献   

16.
The background oriented Schlieren (BOS) technique has been applied to determine the density field in an oblique shock-separated turbulent boundary flow. Measurements were made for two cases, namely, with/without jet flow from the afterbody which is a nozzle. In addition, oil flow and Schlieren visualizations were carried out—the results show certain upstream features of interest including shock excursions. The mean density field from BOS is discussed along with results from conventional Schlieren flow visualization. The data extracted from the mean density field obtained through BOS have been compared for the jet-off and jet-on cases. The data obtained also show the mean density in the base region (jet-off case) to be about 50% of the freestream density and match the isentropic values for the underexpanded jet at the exit. The study involving shock–boundary interaction, movement of freestream shock over the afterbody in the presence of a jet plume provides understanding of flow physics in a flow regime where whole field velocity measurements are extremely difficult.  相似文献   

17.
 The rainbow schlieren deflectometry technique was used to measure oxygen concentrations in a laminar, isothermal helium jet discharged vertically into ambient air. The concentration distributions were inferred from the color schlieren image by taking into consideration the sampling interval and noise in measurements, especially near the jet center. Excellent quantitative agreement was reached between measurements from schlieren and a continuous sampling probe. This work demonstrates the capability of the schlieren technique for providing accurate, spatially-resolved, nonintrusive, full-field of view measurements of species concentration in an isothermal binary system. Because the basic quantity measured is the refractive index, the present schlieren technique can be extended for quantitative measurements of other scalar flow properties related to the refractive index. Received: 21 April 1997 / Accepted: 14 November 1997  相似文献   

18.
A motion of a vortex ring in a stratified fluid is accompanied by associated disturbances which, in the schlieren visualization in the field of a horizontal density gradient, have the shape of a symmetric four-petal configuration. The criterion of the existence of the disturbances is the Froude number Fr based on the motion velocity and the vertical vortex size. On the range Fr > 1, the disturbances are stable with respect to the variation of themotion regime and the distortion of the vortex shape. For Fr < 1 the disturbances disappear. Computer processing of the schlieren photographs showed that the experimental spatial dependences of the disturbance amplitude are close to the functions describing the distribution of the vertical velocity component in the inviscid flow past a sphere.  相似文献   

19.
20.
Experiments on flow about simple bodies dropped in water tanks and shear layers in a water tunnel, were performed to study the application of the schlieren technique to water flow. It is verified that small residual temperature differences initially present in the fluid, lead to substantial temperature gradients near the surface of the models. The resulting gradients in index of refraction make the schlieren system a viable method of flow visualization. Finally, the experimental results are explained by estimates based on the geometrical optics of the system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号