首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The normal stress ratio theory is applied to predict crack extension behavior in center-notched unidirectional graphite-epoxy of arbitrary fiber axis orientation, subjected to arbitrary far-field planar loading. The theory is applied within analytical solutions for two infinite plate geometries: a plate with a sharp center crack, and a plate with an elliptical center flaw. A critical analytical case is identified suggesting that application of the theory within a stress solution modelling crack tip shape may increase the accuracy of crack growth direction predictions. Crack extension direction, location of crack extension, and critical stress predictions of the theory are compared to those obtained from experiments on specimens subjected to tensile, shear, and mixed-mode far-field loading. The comparison shows that, applied within each analytical solution, the normal stress ratio theory provides verifiable predictions of crack growth behavior. By modelling actual notch tip shape, the elliptical notch solution is able to provide accurate qualitative predictions of the origin of crack extension along the periphery of a cut notch tip in a way that the sharp crack analysis cannot. The sharp notch solution appears to provide slightly more accurate crack growth direction predictions, however. Also, in predicting critical applied far-field stresses, the sharp crack solution appears to exhibit a stronger ability to model subtle experimental trends.  相似文献   

2.
Prestressed composite patch bonded on cracked steel section is a promising technique to reinforce cracked details or to prevent fatigue cracking on steel structural elements. It introduces compressive stresses that produce crack closure effect. Moreover, it modifies the crack geometry by bridging the crack lips and reduces the stress range at crack tip. Fatigue tests were performed on notched steel plate reinforced by CFRP strips as a step toward the validation of crack patching for fatigue life extension of riveted steel bridges. A debond crack in the adhesive–plate interface was observed by optical technique. Debond crack total strain energy release rate is computed by the modified virtual crack closure technique. A parametric analysis is performed in order to investigate the influence of some design parameters such as the composite patch Young’s modulus, the adhesive thickness and the pretension level on the adhesive–plate interface debond.  相似文献   

3.
Loss of adhesion at the tip of an interface crack   总被引:3,自引:0,他引:3  
A model is constructed to analyze adhesive bond failure at the tip of an interface crack. The model is based on the assumption that there are zones of bounded cohesive tensile and shear stresses near a crack tip. Within the context of certain broad a-priori assumptions on the distributions of certain stress and displacement components in the cohesive zones, the requirement thatall stresses in the two materials remain bounded provides a method to compute the specific details for these zones. It is assumed that bond failure occurs when the extension of the bond fiber at the crack tip exceeds a critical value. For an interface crack in a uniform tension field computations for two alternate formulations suggest that this failure criterion is independent of the precise distribution of the cohesive stresses, but rather depends only upon their averaged values. Combined loading with a dominant tensile component has also been analyzed. If the critical extension of bond fibers and the maximum value of the cohesive tensile stress are known, the model provides the maximum allowable interface stresses for given crack dimension and material parameters.  相似文献   

4.
为给塑性黏结炸药(PBX)的力学强度设计提供支撑、探索材料细观特征量与材料强度之间的定量规律,应用微裂纹扩展区理论,将PBX炸药的单轴拉伸过程中力学响应特征的变化归结为扩展裂纹取向角度的增加,将扩展裂纹最大取向角与拉伸强度相关联,构建了基于材料细观特征量的拉伸强度理论模型,并采用不同温度的单轴拉伸实验验证了该理论模型的有效性。研究表明:该拉伸强度理论模型可以实现对PBX炸药拉伸强度与炸药微裂纹密度、颗粒/黏结剂界面性能以及颗粒/黏结剂体系的表观杨氏模量、泊松比等细观特征量之间关系的定量描述。  相似文献   

5.
The two-dimensional problem of a rigid rounded-off angle triangular inclusion partially bonded in an infinite elastic plate is studied. The unbonded part of the inclusion boundary forms an interfacial crack. Based on the complex variable method for curvilinear boundaries, the problem is reduced to a non-homogeneous Hilbert problem and the stress and displacement fields in the plate are obtained in closed form. Special attention is paid in the investigation of the stress field in the vicinity of the crack tip. It is found that the stresses present an oscillatory singularity and the general equations for the local stresses are derived. The singular stress field is coupled with the maximum circumferential stress and the minimum strain energy density criteria to study the fracture characteristics of the composite plate. Results are given for the complex stress intensity factors, the local stresses, the crack extension angles and the critical applied loads for unstable crack growth from its more vulnerable tip or two types of interfacial cracks along the inclusion boundary.  相似文献   

6.
A photoelastic study of the elastodynamic-stress fields around a circular, elastic inclusion (Solithane 113) embedded in an elastic plate (Hysol 4485) is presented. The edge of the plate was loaded by an explosive charge, which produced a plane, compressional stress wave of triangular shape. Isochromatic-fringe patterns were obtained, which give the maximum shear stresses, both inside the inclusion and in the surrounding medium. The principal stresses on the axis of symmetry were determined through the use of the oblique-incidence method. It was found that small tensile stresses are generated at the interface on the shadow side of the inclusion. The focusing effect inside the inclusion predicted by ray theory was not observed. Finally, the shape of the wavefront as the wave passes the inclusion was determined.  相似文献   

7.
采用动静组合加载实验装置和数字激光焦散线实验系统,进行了0、3、6、9 MPa等4种压应力场中PMMA试件的爆破致裂实验,分析了沿静态主应力方向扩展的裂纹运动学和力学行为。实验结果表明:首先,静态竖向载荷在预制炮孔周围产生应力集中,在炮孔壁上下端部处出现最大拉应力;随后,在动态爆炸载荷的叠加作用下,裂纹优先在炮孔壁上最大拉应力位置处起裂,并沿最大主应力方向扩展;裂纹扩展过程中,静态竖向载荷越大,裂纹扩展速度越大,且裂纹尖端应力强度因子值越大。  相似文献   

8.
When a stress wave (tensile or compressive) impinges on a crack existing in an elastic medium, reflection, refraction and diffraction-phenomena take place. A result of diffraction is the loading of the crack. While compressive stress-waves do not create any stress concentration at the tip of an existing crack, tensile stress-waves develop stresses at the tip which may cause a propagation of the crack. If the tensile pulse is weak the crack may propagate by steps under the action only of successive tensile stress-pulses, whereas intermediate compressive-stress pulses do not have any influence.A complete study of the phenomena of incubation, initiation and propagation of cracks in thin plates, when they are subjected to a compressive pulse, which is subsequently reflected from the free boundaries of the plate and changed to complicated wave-trains, was undertaken in this paper, based on the method of caustics. Interesting results that were derived from this experimental study are presented.  相似文献   

9.
本文采用考虑裂纹面上具有任意分布载荷的线弹簧模型,在Kirchhoff板弯曲理论的假设下,将含半椭圆型表面裂纹的平板问题化为一组耦合的积分方程组进行求解,对均匀拉伸和纯弯曲两种载荷作用下的应力强度因子数值解,同经典线弹簧模型和有限元解进行了比较,并给出了经典线弹簧模型不能得到的、裂纹面上承受幂次不均匀应力分布时应力强度因子的数值解.  相似文献   

10.
Three-dimensional crack closure correction methods are investigated in this paper.The fatigue crack growth tests of surface cracks in 14MnNbq steel for bridge plate subjected to tensile and bending loadings are systematically conducted.The experimentally measured fatigue crack growth rates of surface cracks are compared with those of through-thickness cracks in detail.It is found that the crack growth rates of surface cracks are lower than those of through-thickness cracks.In order to correct their differences in fatigue crack growth rates, a dimensionless crack closure correction model is proposed.Although this correction model is determined only by the experimental data of surface cracks under tensile loading with a constant ratio R=0.05, it can correlate the surface crack growth rates with reasonable accuracy under tensile and bending loadings with various stress ratios ranging from 0 to 0.5.Furthermore, predictions of fatigue life and crack aspect ratio for surface cracks are discussed, and the predicted results are also compared with those obtained from other prediction approaches.Comparison results show that the proposed crack closure correction model gives better prediction of fatigue life than other models.  相似文献   

11.
Plane strain plastic yielding at a crack tip has been represented by edge dislocations with Burgers vectors parallel to symmetrical planes inclined at 70° and 45° to the plane of the crack. The plastic displacement and the stresses near the crack tip were calculated by a numerical method and the effect of a reduction in applied stress was determined. Removal of the whole or a part of the initial load produces reverse shear in regions of the slip band nearest the crack tip. The amount of reverse shear depends only on the reduction in the load and not on its initial value. The reverse shear is associated with the presence of negative dislocations and the stresses near the crack tip may become compressive even though the applied (remote) stress is still tensile. The degree and extent of compression depends on the reduction in applied stress and on its original value. It is argued that the residual compressive stresses produced under fluctuating loads may produce crack closure and crack arrest. The effect of residual plasticity in a slip band left behind a growing crack has been estimated. It is shown that after an overload the excess residual plasticity opposing crack opening rises to a maximum value when the crack tip has advanced some distance from the point where the overload was applied.  相似文献   

12.
Materials with a regular structure characterized by quasi-brittle and quasi-ductile fractures are considered in the case where the characteristic linear dimension of the structural element is known. Necessary and sufficient fracture criteria are constructed using the Neuber-Novozhilov approach. A modified Leonov-Panasyuk-Dugdale model for an opening mode crack is proposed where the width of the prefracture zone coincides with the width of the plasticity zone. For the critical parameters of quasi-brittle fracture (tensile stress, length of prefracture zones, stress intensity factors), relations are obtained that allow material fracture to be considered in the case where the crack length is negligible compared to the characteristic linear dimension of the structural element. A fracture diagram obtained using the critical stresses calculated from the necessary and sufficient criteria is considered in a wide range of crack lengths. The elastoplastic problem of extension of a plate with a central crack is solved using the finite-element method. The dimensions and shape of the plastic zone near the crack tip are determined for different levels of loads corresponding to quasi-brittle and quasi-ductile fracture. The obtained results are analyzed to estimate the width of the prefracture zone and the critical crack opening.  相似文献   

13.
A crack bridging model is presented for analysing the tensile stretching and bending of a cracked plate with a patch bonded on one side, accounting for the effect of out-of-plane bending induced by load-path eccentricity inherent to one-sided repairs. The model is formulated using both Kirchhoff–Poisson plate bending theory and Reissners shear deformation theory, within the frameworks of geometrically linear and nonlinear elasticity. The bonded patch is represented as distributed springs bridging the crack faces. The springs have both tension and bending resistances ; their stiffness constants are determined from a one-dimensional analysis for a single strap joint, representative of the load transfer from the cracked plate to the bonded patch. The resulting coupled integral equations are solved using a Galerkin method, and the results are compared with three-dimensional finite element solutions. It is found that the formulation based on Reissners plate theory provides better agreement with finite element results than the classical plate theory.  相似文献   

14.
Although a lot of interface crack problems were previously treated, few solutions are available under arbitrary crack lengths and material combinations. In this paper the stress intensity factors of an edge interface crack in a bonded strip are considered under tension with varying the crack length and material combinations systematically. Then, the limiting solutions are provided for an edge interface crack in a bonded semi-infinite plate under arbitrary material combinations. In order to calculate the stress intensity factors accurately, exact solutions in an infinite bonded plate are also considered to produce proportional singular stress fields in the analysis of FEM by superposing specific tensile and shear stresses at infinity. The details of this new numerical solution are described with clarifying the effect of the element size on the stress intensity factor. It is found that for the edge interface crack the normalized stress intensity factors are not always finite depending upon Dunders’ parameters. This behavior can be explained from the condition of the singular stress at the end of bonded strip. Convenient formulas are also given by fitting the computed results.  相似文献   

15.
多簇压裂干扰应力变化规律及对裂纹扩展的影响   总被引:1,自引:0,他引:1  
为研究水平井分段多簇压裂缝间的干扰应力及其对裂纹扩展的影响,在现有二维未考虑地应力的单裂缝干扰应力解析解的基础上,利用双平面复变函数保角变换得到了包含地应力项的三维干扰应力解析解。基于扩展有限元法建立三维多裂缝扩展力学模型,利用Python脚本二次开发平台实现了三维多裂缝水力压裂参数化建模,通过解析解与数值计算对比分析,得到如下结论。裂纹两侧裂纹面法向和走向干扰正应力分别为压应力和拉应力,均呈纺锤形,法向干扰应力影响范围大约为走向干扰应力的5倍;裂纹尖端裂纹面法向和走向干扰正应力分别为拉应力和压应力;裂纹尖端两侧存在干扰剪应力;考虑初始地应力对干扰应力解析解进行修正后的干扰应力值均变小;多簇压裂中裂缝间的干扰应力叠加,簇间距越小,叠加效果越强;多簇压裂的干扰应力使裂缝间裂纹面法向压应力增大,走向压应力减小,导致裂纹扩展注水压力升高,裂缝张开的宽度降低,不利于单裂缝的扩展;干扰应力使裂缝间应力差降低,甚至局部最小地应力方向发生改变,有利于形成复杂缝网。  相似文献   

16.
The general solution of stresses is derived for a T-shaped junction of two thin plates with an adhesion crack.The plates are orthotropic.A shear force is applied on the crack surface.The analysis is based on the supposition that the stresses in each plate can be approximated by a plane stress condition.The results obtained are verified by numerical calculation of FEM.  相似文献   

17.
The principal stresses in the vicinity of the crack tip in a rubber sheet have been determined experimentally by measuring the strain field with the aid of an imprinted grid work and calculating the stresses by assuming neo-Hookean material behavior. The principal stresses in the crack-tip vicinity are presented graphically. A correlation between the measured maximum tensile stress on the crack axis and that obtained from infinitesimal-elasticity theory is established. Information is given which provides bounds on the loading and deformation within which a large-deformation elastic analysis is valid before geometric deformations due to tearing must be considered.  相似文献   

18.
Carloni  Christian  Piva  Aldino  Viola  Erasmo 《Meccanica》2004,39(4):331-344
This paper is concerned with the study of the elastostatic fracture response of an orthotropic plate with an inclined crack and subjected at infinity to a biaxial uniform load. To this end an unconventional approach to the derivation of the complex variable expressions of the elastic fields is proposed. The above formulation has been used to solve the boundary value problem as superposition of Mode-I and Mode-II crack problems and it is shown that the near tip asymptotic expressions of stress and displacement fields are affected by non-singular terms originated by load biaxiality. The maximum circumferential tensile stress criterion is applied in order to investigate the effects of non-singular terms on the angle of crack extension.  相似文献   

19.
断裂是一个跨尺度复杂的物理过程,对宏观尺度的断裂行为已有深入的研究和发展,然而对微观尺度的断裂行为及断裂过程中应力场的变化缺乏深入的理解。本文通过分子动力学模拟,研究了具有不同初始缺陷(尖锐裂纹、钝裂纹和孔洞)的单晶镍的断裂行为和应力分布特征。结果表明,不同的初始缺陷导致了不同的断裂机制、断裂强度和抗断裂性能。含初始孔洞的单晶镍样品有最高的断裂强度和最强的抗断裂性能,这与孔洞扩展过程中堆积层错的形成密切相关。其次是含初始钝裂纹的样品,在裂纹扩展过程中出现由[100]超位错发射引起的裂尖钝化;含尖锐裂纹的样品表现为脆性断裂,裂尖原子没有出现微结构的变化,其强度和抗断裂性能最低。此外,不同的初始缺陷也会导致断裂过程中应力分布的变化,对含有尖锐裂纹的脆性断裂试样,高应力(拉伸应力、平均应力和米塞斯应力)总是出现在扩展裂纹的裂尖。而对于含有钝裂纹或孔洞的韧性断裂试样,高应力不仅分布在裂尖,也分布在位错发射和堆积层错形成的区域,在裂纹/孔洞扩展之前,应力随着加载时间的增加而迅速增加,而一旦裂纹或孔洞开始扩展,应力增加非常缓慢或几乎不增加,但拉伸应力值始终大于平均应力和米塞斯应力值。这表明,在I型...  相似文献   

20.
A number of plane stress numerical analyses of the mode I elastoplastic fracture mechanics problem have been performed in the past using the Huber–Mises yield criterion. This study employs instead the Tresca yield condition using an incremental theory of plasticity for a stationary crack. A commercial finite element program is used to solve the opening mode of fracture problem (mode I) for a square plate containing a central crack under generalized plane stress loading conditions. A biaxial uniform tensile traction is applied to the edges of a thin plate composed of a linear elastic non-work hardening material under small strain assumptions. The finite element results are compared with the analytical predictions of the Dugdale plastic strip model for a crack in an infinite plate subject to a biaxial uniform load at infinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号