首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Quaternary ammonium drugs are anticholinergic agents and some of which have been known to be abused in equine sports. A general screening method for this class of drugs in equine urine by liquid chromatography-mass spectrometry (LC-MS) has not been reported. The paper describes an efficient LC-MS-MS method for the simultaneous detection and confirmation of twenty quaternary ammonium drugs at low ng mL?1 in equine urine after solid-phase extraction. Quaternary ammonium drugs were extracted from equine urine by solid-phase extraction using ISOLUTE® CBA SPE Columns and analysed by LC-MS-MS in the positive electrospray ionisation mode. Separation of twenty quaternary ammonium drugs (the quaternary ammonium ions of edrophonium chloride, pyridostigmine bromide, neostigmine bromide, bretylium tosylate, ipratropium bromide, tubocurarine chloride, N-butylscopolammonium bromide, mepenzolate bromide, rocuronium bromide, clidinium bromide, pipenzolate bromide, isopropamide iodide, glycopyrronium bromide, alcuronium chloride, oxyphenonium bromide, propantheline bromide, tridihexethyl chloride, vecuronium bromide, mivacurium chloride and pancuronium bromide) was achieved in a reversed phase column with a mixture of aqueous ammonium formate (pH 3.0, 10 mM) and acetonitrile as the mobile phase. Detection and confirmation of the twenty quaternary ammonium drugs at about 5 ng mL?1 in equine urine could be achieved within 22 min using product-ion scan MS-MS. The target analytes were detected by examination of extracted-ion chromatograms of their product ions. Drugs spiked in different equine urine (n = 15) were consistently detected. Negative samples (n = 30) of normal post-race equine urine have also been analysed, no matrix interference at the targeted masses and retention times was observed. The method was successfully applied to the analyses of drug-administration samples. Other method validation data including reproducibility and recovery will also be presented. An LC-MS-MS method for the simultaneous detection and confirmation of twenty quaternary ammonium drugs in equine urine was developed. The methodology should be applicable to other biological matrices such as human urine.  相似文献   

2.
This paper describes a convenient method for the extraction and detection of eight anti-ulcer drugs simultaneously in horse urine, a relatively complex and viscous matrix, using a single-step liquid-liquid extraction followed by high-performance liquid chromatography – mass spectrometry (LC-MS). Anti-ulcer drugs were isolated from horse urine by salting out and liquid-liquid extraction. Detection of these drugs at concentrations below 1 ng mL?1 could be achieved using LC-MS-MS in the positive atmospheric pressure chemical ionisation (APCI) mode. The above analysis was also extended to elimination studies of horses administered with ranitidine and omeprazole. The urinary elimination data of these two drugs suggest that ranitidine was eliminated from horse urine at a much slower rate than omeprazole. In addition, three ranitidine metabolites and six omeprazole metabolites were identified for the first time in equine urine samples.  相似文献   

3.
Monitoring of amphetamines and designer drugs in human urine is a timely topic in clinical toxicology, surveillance of drug substitution, forensic science, drug testing at the workplace, and doping control. Confirmation testing of urinary amphetamine, methamphetamine, 3,4-methylenedioxymethamphetamine (MDMA, Ecstasy) and 3,4-methylenedioxyamphetamine (MDA) by capillary electrophoresis (CE) combined with atmospheric pressure electrospray ionization and ion trap mass spectrometry (MS) is described. Using an aqueous pH 4.6 buffer composed of ammonium acetate/acetic acid, CE-MS and CE-MS2 provided data that permitted the unambiguous confirmation of these drugs in external quality control urines. Furthermore, other drugs of abuse present in alkaline urinary extracts, including methadone and morphine, could also be monitored. The data presented illustrate that the sensitivity achieved with the benchtop MS is comparable to that observed by CE with UV absorption detection. CE-MS2 is further shown to be capable of identifying comigrating compounds, including the comigration of amphetamine with nicotine.  相似文献   

4.
Safarpour H  Asiaie R 《Electrophoresis》2005,26(7-8):1562-1566
Capillary electrophoresis combined with mass spectrometry (CE-MS) was used for the rapid determination of the negatively charged herbicide, Glyphosate, in a selective dried granule (DG) formulation. The CE-MS method was required to ensure product safety from the risk of cross contamination of a selective herbicide formulation. Glyphosate separation was achieved by using a bare fused-silica capillary column, operated in the reversed-polarity mode, using ammonium formate buffer, pH 2.5. The total CE-MS analysis time was under 10 min and the limit of detection was 10 ng/mL. The CE-MS analysis of Glyphosate was simple, rapid, and selective. The method involved minimal sample handling and was proven to be ideal for cross-contamination investigations in manufacturing samples.  相似文献   

5.
Tsai JL  Wu WS  Lee HH 《Electrophoresis》2000,21(8):1580-1586
A rapid, sensitive method for the determination of morphine and amphetamine was developed using capillary zone electrophoresis coupled with electrospray interface (ESI), ion-trap tandem mass spectrometry (CE-ESI-MS2). Morphine and amphetamine were separated in 20 mM ammonium acetate buffer (pH 6.6) and detected by ion-trap mass detector in different analytical time segments (0-6.25 min for amphetamine and 6.25-12.0 min for morphine) in which the tune file for each compound was used separately. Molecular ions of morphine (m/z 286) and amphetamine (m/z 136) were detected at 5.77 and 6.83 min, respectively, while product ions of MS2 for each compound (m/z 229, 201 for morphine and m/z 119 for amphetamine) were detected almost exactly at the same time with their parent compounds. The limits of detection (LOD) for MS2 determination were 30 and 50 ng/mL for amphetamine and morphine, respectively, with an S/N ratio of 3. For more sensitive detection of morphine, the sample was injected for a longer time (i.e., 80 s) and hydrodynamically transported into a CE capillary for MS detection. Morphine and its product ion appear at 0.36 and 0.39 min on the ion chromatogram, respectively, with a five-fold increase of detection sensitivity (LOD, 10 ng/mL). The CE-MS system thus established was further applied for forensic urine samples screened as morphine-positive by fluorescence polarization immunoassay (FPIA). These results indicated the feasibility of CE-ESI-MS2 for confirmative testing of morphine in urine sample.  相似文献   

6.
A sensitive and rapid method based on liquid chromatography-triple-quadrupole tandem mass spectrometry (LC-MS/MS) with electrospray ionization (ESI) has been developed and validated for the screening and confirmation of 44 exogenous anabolic steroids (29 parent steroids and 15 metabolites) in human urine. The method involves an enzymatic hydrolysis, liquid-liquid extraction, and detection by LC-MS/MS. A triple-quadrupole mass spectrometer was operated in positive ESI mode with selected reaction monitoring (SRM) mode for the screening and product ion scan mode for the confirmation. The protonated molecular ions were used as precursor ions for the SRM analysis and product ion scan. The intraday and interday precisions of the target analytes at concentrations of the minimum required performance levels for the screening were 2-14% and 2-15%, respectively. The limits of detection for the screening and confirmation method were 0.1-10 ng/mL and 0.2-10 ng/mL, respectively, for 44 steroids. This method was successfully applied to analysis of urine samples from suspected anabolic steroid abusers.  相似文献   

7.
Insulin and its analogues have been banned in both human and equine sports owing to their potential for misuse. Insulin administration can increase muscle glycogen by utilising hyperinsulinaemic clamps prior to sports events or during the recovery phases, and increase muscle size by its chalonic action to inhibit protein breakdown. In order to control insulin abuse in equine sports, a method to effectively detect the use of insulins in horses is required. Besides the readily available human insulin and its synthetic analogues, structurally similar insulins from other species can also be used as doping agents. The author's laboratory has previously reported a method for the detection of bovine, porcine and human insulins, as well as the synthetic analogues Humalog (Lispro) and Novolog (Aspart) in equine plasma. This study describes a complementary method for the simultaneous detection of five exogenous insulins and their possible metabolites in equine urine. Insulins and their possible metabolites were isolated from equine urine by immunoaffinity purification, and analysed by nano liquid chromatography-tandem mass spectrometry (LC/MS/MS). Insulin and its analogues were detected and confirmed by comparing their retention times and major product ions. All five insulins (human insulin, Humalog, Novolog, bovine insulin and porcine insulin), which are exogenous in horse, could be detected and confirmed at 0.05ng/mL. This method was successfully applied to confirm the presence of human insulin in urine collected from horses up to 4h after having been administered a single low dose of recombinant human insulin (Humulin R, Eli Lilly). To our knowledge, this is the first identification of exogenous insulin in post-administration horse urine samples.  相似文献   

8.
Beclomethasone dipropionate (BDP) is a potent pro-drug to beclomethasone (BOH) and is used in the treatment of chronic and acute respiratory disorders in the horse. The therapeutic dose of BDP (325 microg per horse) by inhalation results in very low plasma and urinary concentrations of BDP and its metabolites that pose a challenge to detection and confirmation by equine forensic laboratories. To solve this problem, a method involving the use of a liquid chromatography coupled with tandem mass spectrometry (LC/MS/MS) was developed for the detection, confirmation and quantification of the analytes in equine samples. Ammonium formate or acetate buffer added to LC mobile phase favored the formation of [M + H](+) ions from BDP and its metabolites, whereas formic acid led to the formation of sodium and potassium adduct ions ([M + Na](+), [M + K](+)) together with [M + H](+) ions. Acetonitrile, on the other hand, favored the formation of abundant solvent adduct ions [M + H + CH(3)CN](+) with the analytes under electrospray ionization (ESI) and atmospheric pressure chemical ionization conditions. In contrast, methanol formed much less solvent adduct ions than acetonitrile. The solvent adduct ions were thermally stable and could not be completely desolvated under the experimental conditions, but they were very fragile to collision-induced dissociation (CID). Interestingly, these solvent adduct ions were observed on a triple-quadrupole mass spectrometry but not on an ion trap instrument where helium used as a damping gas in the ion trap might cause the solvent adduct ions desolvated by collision. By CID studies on the [M + H](+) ions of BDP and its metabolites, their fragmentation paths were proposed. In equine plasma at ambient temperature over 2 h, BDP and B21P were hydrolyzed in part to B17P and BOH, respectively, but B17P was not hydrolyzed. Sodium fluoride added to equine plasma inhibited the hydrolysis of BDP and B21P. The matrix effect in ESI was evaluated in equine plasma and urine samples. The method involved the extraction of BDP and its metabolites from equine plasma and urine samples by methyl tert-butyl ether, resolution on a C(8) column with a mobile phase gradient consisting of methanol and ammonium formate (2 mmol l(-1), pH 3.4) and multiple reaction monitoring for the analytes on a triple-quadrupole mass spectrometer. The detection limit was 13 pg ml(-1) for BDP and B17P, 25 pg ml(-1) for BOH and 50 pg ml(-1) for B21P in plasma and 25 pg ml(-1) for BOH in urine. The method was successfully applied to the analysis of equine plasma and urine samples for the analytes following administration of BDP to horses by inhalation. B17P, the major and active metabolite of BDP, was detected and quantified in equine plasma up to 4 h post-administration by inhalation of a very low therapeutic dose (325 microg per horse) of BDP.  相似文献   

9.
Clenbuterol (CBL) is a potent beta(2)-adrenoceptor agonist used for the management of respiratory disorders in the horse. The detection and quantification of CBL can pose a problem due to its potency, the relatively low dose administered to the horse, its slow clearance and low plasma concentrations. Thus, a sensitive method for the quantification and confirmation of CBL in racehorses is required to study its distribution and elimination. A sensitive and fast method was developed for quantification and confirmation of the presence of CBL in equine plasma, urine and tissue samples. The method involved liquid-liquid extraction (LLE), separation by liquid chromatography (LC) on a short cyano column, and pseudo multiple reaction monitoring (pseudo-MRM) by electrospray ionization quadrupole time-of-flight tandem mass spectrometry (ESI-QTOF-MS/MS). At very low concentrations (picograms of CBL/mL), LLE produced better extraction efficiency and calibration curves than solid-phase extraction (SPE). The operating parameters for electrospray QTOF and yield of the product ion in MRM were optimized to enhance sensitivity for the detection and quantification of CBL. The quantification range of the method was 0.013-10 ng of CBL/mL plasma, 0.05-20 ng/0.1 mL of urine, and 0.025-10 ng/g tissue. The detection limit of the method was 13 pg/mL of plasma, 50 pg/0.1 mL of urine, and 25 pg/g of tissue. The method was successfully applied to the analysis of CBL in plasma, urine and various tissue samples, and in pharmacokinetic (PK) studies of CBL in the horse. CBL was quantified for 96 h in plasma and 288 h in urine post-administration of CLB (1.6 micro g/kg, 2 x daily x 7 days). This method is useful for the detection and quantification of very low concentrations of CBL in urine, plasma and tissue samples.  相似文献   

10.
Monitoring steroid use requires an understanding of the metabolism in the species in question and development of sensitive methods for screening of the steroid or its metabolites in urine. Qualitative information for confirmation of methandrostenolone and identification of its metabolites was primarily obtained by coupled-column high-performance liquid chromatography-tandem mass spectrometry. The steroids and a sulphuric acid conjugate were isolated and identified by their daughter ion mass spectra in the urine of both man and the horse following administration of methandrostenolone. Spontaneous hydrolysis of methandrostenolone sulphate gave 17-epimethandrostenolone and several dehydration products. This reaction had a half-life of 16 min in equine urine at 27 degrees C. Mono- and dihydroxylated metabolites were also identified. Several screening methods were evaluated for detection and confirmation of methandrostenolone use including thin-layer chromatography and high-performance liquid chromatography. Coupled-column liquid chromatography was used for automated clean-up of analytes difficult to isolate by manual methods. The recovery of methandrostenolone was 101 +/- 3.3% (mean +/- S.D.) at 6.5 ng/ml and both methandrostenolone and 17-epimethandrostenolone were quantified in urine by ultraviolet detection up to six days after a 250-mg intramuscular dose to a horse. The utility of on-line tandem mass spectrometry for confirmation of suspected metabolites is also shown.  相似文献   

11.
液相色谱-串联质谱法测定尿液中的内源性类固醇激素   总被引:2,自引:0,他引:2  
王萌烨  向平  严慧  沈保华  沈敏 《色谱》2008,26(1):10-14
建立了液相色谱-串联质谱(LC-MS/MS)测定尿液中的内源性类固醇激素的方法。尿样经葡萄糖醛酸甙酶酶解后进行液-液提取,以甲醇-0.1%甲酸缓冲液(含0.02 mol/L乙酸铵)(体积比为68:32)为流动相,采用Cosmosil C18色谱柱分离,并以三重四极杆串联质谱多反应监测扫描方式对尿样中的脱氢表雄酮(DHEA)、睾酮、表睾酮、雄酮和苯胆烷醇酮等5种激素进行检测。方法的最低检出限为0.01~10 ng/mL,平均回收率为96.7%~106.5%,日内和日间相对标准偏差(RSD)分别小于7%和11%。应用所建立的方法测定了健康志愿者口服DHEA后尿液中内源性类固醇激素的变化情况,结果表明该方法样品处理简便,色谱分离完全,结果准确可靠,可替代气相色谱-质谱法用于体液中内源性类固醇激素兴奋剂的常规分析。  相似文献   

12.
A novel capillary zone electrophoresis separation coupled to electro spray ionization time‐of‐flight mass spectrometry method was developed for the simultaneous analysis of six toxic alkaloids: brucine, strychnine, atropine sulfate, anisodamine hydrobromide, scopolamine hydrobromide and anisodine hydrobromide in human plasma and urine. To obtain optimal sensitivity, a solid‐phase extraction method using Oasis MCX cartridges (1 mL, 30 mg; Waters, USA) for the pretreatment of samples was used. All compounds were separated by capillary zone electrophoresis at 25 kV within 12 min in an uncoated fused‐silica capillary of 75 μm id × 100 cm and were detected by time‐of‐flight mass spectrometry. This method was validated with regard to precision, accuracy, sensitivity, linear range, limit of detection (LOD), and limit of quantification (LOQ). In the plasma and urine samples, the linear calibration curves were obtained over the range of 0.50–100 ng/mL. The LOD and LOQ were 0.2–0.5 ng/mL and 0.5–1.0 ng/mL, respectively. The intra‐ and interday precision was better than 12% and 13%, respectively. Electrophoretic peaks could be identified by mass analysis.  相似文献   

13.
A method using capillary electrophoresis-mass spectrometry (CE-MS) was developed for the structural elucidation of bupivacaine and metabolites in rat urine. Prior to CE-MS analysis, solid-phase extraction (SPE) was used for sample cleanup and preconcentration purposes. Exact mass and tandem mass spectrometric (MS/MS) experiments were performed to obtain structural information about the unknown metabolites. Two instruments with different mass analyzers were used for mass spectrometric detection. A quadrupole time-of-flight (Q-TOF) and a magnetic sector hybrid instrument were coupled to CE and used for the analysis of urine extracts. Hydroxybupivacaine as well as five other isomerically different metabolites were detected including methoxylated bupivacaine.  相似文献   

14.
A sensitive and specific capillary gas chromatographic (GC) assay was developed for the quantitation of the quaternary ammonium steroidal neuromuscular blocking drugs pancuronium (PANC), vecuronium (VEC) and pipecuronium (PIP), as well as the metabolites 3-desacetylpancuronium (3-desPANC) and 3-desacetylvecuronium (3-des VEC) in plasma, bile and urine; the putative metabolite 3-desacetylpipecuronium (3-des PIP) was extracted and quantitated only in urine. The procedure employed a single dichloromethane extraction of the iodide ion-pairs of the monoquaternary or bisquaternary ammonium compounds (including internal and external standards) from acidified, ether-washed biological fluid followed by the formation of stable O-tert.-butyldimethylsilyl derivatives at the 3-hydroxy steroidal position of the metabolites. An automated capillary GC system fitted with a nitrogen-sensitive detector and an integrator was then used to analyze and quantitate both parent compounds and their derivatized metabolites. Optimal extraction, derivatization and GC conditions, as well as short-term stability and recoveries of these drugs and metabolites in plasma, are reported. Electron ionization mass spectrometry combined with GC was used to confirm the identities of compounds eluted from the column. The assay demonstrated a 10(3)-fold linear range up to 5000 ng/ml for PANC, VEC, 3-des VEC and PIP, and lower limits of detection with adequate precision of 2 ng/ml for PANC, VEC and PIP, and 4 ng/ml for 3-des VEC; 3-des PANC was linear from 8 to 500 ng/ml while 3-des PIP was linear from 25 to 1000 ng/ml. The precision (coefficient of variation) of the calibration curves for underivatized drugs and their derivatized metabolites over the linear ranges was 2-20% and the reproducibility of the assay over a range of clinical concentrations of these drugs found in human plasma was 5-16% for PANC, 2-4% for VEC and 6-11% for PIP. No interferences were detected in the assay of plasma samples from 106 surgical patients.  相似文献   

15.
A method for the simultaneous separation, identification, quantification and confirmation of the presence of 21 glucocorticoids (GCC) in equine plasma by liquid chromatography coupled with triple stage quadrupole tandem mass spectrometry (LC/TSQ-MS/MS) is described. Plasma sample augmented with the 21 GCC was extracted with methyl tert-butyl ether (MTBE) and analyzed by positive electrospray ionization. Desoxymetasone or dichlorisone acetate was used as the internal standard (IS). Quantification was performed by IS calibration. For each drug, one major product ion was chosen and used for screening for that drug. Analyte confirmation was performed by using the three most intense product ions formed from the precursor ion and the corresponding mass ratios. The recovery of the 21 GCC when spiked into blank plasma at 5 ng/mL was 45-200% with coefficient of variation (CV) from 0.3-18%. The limit of detection (LOD) and that of quantification (LOQ) for most of the analytes were 50-100 pg/mL and 1 ng/mL, respectively, whereas that of confirmation (LOC) was 100-300 pg/mL depending on the analyte. Intra- and inter-day precisions expressed as CV for quantification of 1 and 10 ng/mL was 1.0-17%, and 0.51-19%, respectively, and the accuracy was from 84-110%. The linear concentration range for quantification was 0.1-100 ng/mL (r(2) > 0.997). Estimated measurement uncertainty was from 11-37%. This study was undertaken to develop a method for simultaneous screening, identification, quantification and confirmation of these agents in post-race equine plasma samples. The method has been successfully applied to screening of a large number of plasma samples obtained from racehorses in competition and in pharmacokinetic studies of dexamethasone in the horse and concurrent changes in endogenous GCC, hydrocortisone and cortisone. The method is simple, sensitive, selective and reliably reproducible.  相似文献   

16.
Riociguat is novel antihypertensive drug for treatment of pulmonary hypertension. As such, it is still being tested in many clinical and pharmacokinetic trials. Existing methods that determine serum riociguat and desmethylriociguat (DMR) are based solely on liquid chromatography with mass spectrometry. Therefore, we present a novel capillary electrophoresis with mass spectrometry method (CE-MS) for their determination in human serum as alternative method for ongoing trials. Complete resolution of both analytes was achieved by means of pH optimization of ammonium formate background electrolytes that are fully compatible with ESI/MS detection. Simple liquid-liquid extraction was used as sample pretreatment. The calibration dependence of the method was linear (in the range of 10–1000 ng/mL), with adequate accuracy (90.1–114.9%) and precision (13.4%). LOD and LOQ were arbitrarily set at 10 ng/mL for both analytes. Clinical applicability was validated using serum samples from patients treated with riociguat in pharmacokinetic study and the results corresponded with reference HPLC-MS/MS values. Capillary electrophoresis proved to be sensitive and selective tool for the analysis of riociguat and DMR.  相似文献   

17.
Recombinant human erythropoietin (rhEPO), darbepoetin alfa (DPO) and methoxy polyethylene glycol-epoetin beta (PEG-EPO) are synthetic analogues of the endogenous hormone erythropoietin (EPO). These erythropoiesis-stimulating agents have the ability to stimulate the production of red blood cells and are commercially available for the treatment of anaemia in humans. These drugs are understood to have performance-enhancing effects on human athletes due to their stimulation of red blood cell production, thereby improving delivery of oxygen to the muscle tissues. Although their effect on horses has not been proven, these substances were thought to be similarly performance enhancing and have indeed been applied covertly to horses. As such, these protein-based drugs are prohibited by authorities in both human and equine sports. The method officially adopted by the International Olympic Committee (IOC) and World Anti Doping Agency (WADA) for the confirmation of rhEPO and/or DPO (rhEPO/DPO) in human urine is based on electrophoresis in combination with Western blotting. A shortcoming of the WADA method is the lack of definitive mass spectral data for the confirmation of a positive finding. Recently, a liquid chromatography–tandem mass spectrometry (LC/MS/MS) method for the detection and confirmation of rhEPO/DPO in equine plasma was reported. However, we have not been successful in achieving the reported sensitivity. This paper presents a method for the detection and confirmation of rhEPO/DPO, as well as the newly released PEG-EPO, in equine plasma. The procedures involve immunoaffinity extraction using anti-rhEPO antibody-coated Dynabeads followed by trypsin digestion. The injected extract was further purified and concentrated using an on-line trap column in the nano-LC system. Detection and confirmation were achieved by monitoring a unique peptide segment of rhEPO/DPO/PEG-EPO using nano-liquid chromatography–tandem mass spectrometry equipped with a nanospray ionisation source operated in the selected reaction monitoring mode. rhEPO, DPO and PEG-EPO can be confirmed at 0.1, 0.2 and 1.0 ng/mL, respectively, in equine plasma.  相似文献   

18.
β-Blocking drugs present in commercial pharmaceutical products are determined in present urine of volunteers between 4 and 24 hours after the administration of a therapeutical dose. The drugs are extracted, hydrolysed, derivatized with pentafluoropropionic anhydride, and analyzed by capillary gas chromatography and electron capture detection. Metabolite identification and drug confirmation is by capillary gas chromatography–negative ion chemical ionization mass spectrometry (GC-NICIMS). This method is very specific and a sensitivity below 1 ng/ml is obtained.  相似文献   

19.
A simple, rapid and sensitive liquid chromatography/electrospray tandem mass spectrometry (LC-MS/MS) quantitative detection method, using cefalexin as internal standard, was developed for the analysis of faropenem in human plasma and urine. After precipitation of the plasma proteins with acetonitrile, the analytes were separated on a C18 reversed-phase column with 0.1% formic acid-methanol (45:55, v/v) and detected by electrospray ionization mass spectrometry in positive multiple reaction monitoring mode. Calibration curves with good linearities (r=0.9991 for plasma sample and r=0.9993 for urine sample) were obtained in the range 5-4000 ng/mL for faropenem. The limit of detection was 5 ng/mL. Recoveries were around 90% for the extraction from human plasma, and good precision and accuracy were achieved. This method is feasible for the evaluation of pharmacokinetic profiles of faropenem in humans, and to our knowledge, it is the first time the pharmacokinetic of faropenem has been elucidated in vivo using LC-MS/MS.  相似文献   

20.
A new method for the determination of illicit and abused drugs in blood by capillary zone electrophoresis-electrospray ionization-time-of-flight mass spectrometry is proposed, in view of its application in clinical and forensic toxicology. The analytes (methamphetamine, methylenedioxyamphetamine, methylenedioxyethylamphetamine, methylenedioxymethamphetamine, methadone, cocaine, morphine, codeine, 6-acethylmorphine, benzoylecgonine) were separated with capillary zone electrophoresis by applying 15 kV within 25 min, in an uncoated fused-silica capillary (75 microm x 100 cm) using a 25 mM ammonium formate electrolyte solution (pH 9.5). The capillary electropherograph was coupled to time-of-flight mass spectrometry through an orthogonal electrospray ionization source, with a coaxial sheath liquid interface. The sheath liquid was composed of isopropanol-water (1:1 v/v) containing 0.5% formic acid delivered at 4 microL/min. Forensic drugs were identified by exact mass determination (mass accuracy typically < or =5 ppm) and by matching of the isotopic pattern. Under optimized conditions, linearity was assessed in the range 10-2000 ng/mL, with correlation coefficients between 0.9744 and 0.9982 for all the analytes. LODs were in the range of 2-10 ng/mL (S/N > or =3) and LOQs of 10-30 ng/mL. The CVs (tested at 40 and 800 ng/mL in biological matrix) were below 2.97% for migration times and below 14.61% for peak area ratios (analyte/internal standard). Blood samples were extracted by using a liquid-liquid extraction procedure and injected under field-amplified sample stacking conditions. The method was successfully applied to real cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号