首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
线性共轭高分子P-1是由单体1,4-二溴-2,3-二正丁氧基萘(M-2)和5,5′-二乙烯-2,2′-联吡啶(M-3)通过Pd催化Heck偶合反应合成得到,高分子配合物P-2P-3由高分子P-1和Eu(TTA)3·2H2O和Gd(TTA)3·2H2O反应生成。高分子P-1能发射强蓝绿色荧光。高分子配合物P-2P-3发光性能测试表明,含有Eu(Ⅲ)的高分子配合物P-2不仅显示高分子荧光,而且还显示了Eu(Ⅲ)(5D07F2)特征荧光,含Gd(Ⅲ)的高分子配合物P-3仅发射高分子的荧光,其荧光波长相对P-1而言,呈现13 nm红移。  相似文献   

2.
线性共轭高分子P-1是由单体1,4-二溴-2,3-二正丁氧基萘(M-2)和5,5'-二乙烯-2,2'-联吡啶(M-3)通过Pd催化Heck偶合反应合成得到,高分子配合物P-2和P-3由高分子P-1和Eu(TTA)3·2H2O和Gd(TTA)3·2H2O反应生成.高分子P-1能发射强蓝绿色荧光.高分子配合物P-2和P-3发光性能测试表明,含有Eu(Ⅲ)的高分子配合物P-2不仅显示高分子荧光,而且还显示了Eu(Ⅲ)(5D0→7F2)特征荧光,含Gd(Ⅲ)的高分子配合物P-3仅发射高分子的荧光,其荧光波长相对P-1而言,呈现13 nm红移.  相似文献   

3.
基于Eu(Ⅲ)配合物的圆偏振发光材料在三维显示和生物响应成像等领域中引起了广泛的关注,我们设计并报道了一对羧基化2,2′-联吡啶手性配体((+)-L和(-)-L)的合成。通过与高发光效率的β-二酮Eu(Ⅲ)配合物[Eu(TTA)3]·2H2O(TTA=2-噻吩甲酰三氟丙酮)反应,可以分别得到一对手性双核Eu(Ⅲ)对映体[Eu2((+)-L)2(TTA)2(C2H5OH)2]((+)-1)和[Eu2((-)-L)2(TTA)2(C2H5OH)2]((-)-1),并通过单晶X射线衍射测定了(+)-1的结构。我们研究了(+)-1和(-)-1的吸收、发射和手性光谱学性质,能够清晰地检测到圆偏振发光活性。  相似文献   

4.
配体2,2′-联吡啶(bipy)、磺基水杨酸(H2hssal)和镉盐反应合成了配合物[Cd(hssal)(bipy)(H2O)2]·H2O(1),用单晶X-射线和元素分析对生成的晶体进行了表征,结构研究发现该晶体属于单斜晶系P21/c空间群。Cd(Ⅱ)采取八面体配位几何构型,磺基水杨酸作为二齿桥联配体连结不同的Cd(Ⅱ)原子形成一维链结构,一维链被O-H…O氢键连接形成二维层,再进一步由O-H…O氢键将二维层联结在一起形成三维结构。研究了配合物1的荧光性质。CCDC:772715。  相似文献   

5.
单体(R)-3,3′-二碘-2,2′-二正丁氧基-1,1′-联萘((R)-M-1),(R)-6,6′-二溴-2,2′-二正丁氧基-1,1′-联萘((R)-M-2)分别与1,4-二乙烯基-2,3-二丁氧基萘(M-3),在钯催化下,通过Heck交叉耦合反应合成手性高分子P-1与P-2.单体和高分子进行了1H-NMR1、3C-NMR、FT-IR、旋光度、GPC、UV、热分析、荧光光谱和CD等测试分析.高分子侧链上引入丁氧基后使得手性高分子溶解性增强并具有良好的成膜性,手性高分子P-1和P-2都能发射较强的蓝绿色荧光,荧光量子效率分别为0.42和0.48.  相似文献   

6.
以2,2′-联吡啶-3,3′-二羧酸(H2L)和1,10-邻菲啰啉(Phen)为配体合成了一个新的锰(Ⅱ)配合物[Mn(H2O)(L)(Phen)2].(H2O)3。该配合物晶体属单斜晶系,空间群P21/c。在配合物中,中心锰(Ⅱ)离子的配位数是6,处于变形的八面体配位环境中。还测定了标题配合物的磁性,荧光和电化学性能,结果表明:在低温下,配合物有反铁磁性;当激发波长为656 nm时,配合物在682 nm附近有一个宽的荧光发射峰;在循环伏安过程中配合物的电子转移是准可逆的,对应的电极反应是Mn髥/Mn(Ⅱ)。  相似文献   

7.
在Pd(PPh3)4催化下,将单体(S)-6,6'-二溴-2,2'-二正丁氧基-1,1'-联萘[(S)-M-1]和(R)-6,6'-二溴-2,2'-二正丁氧基-1,1'-联萘[(R)-M-1]分别与2,5-二(4-三正丁基锡基苯)-1,3,4-噁二唑(M-2)通过Stille交叉耦合反应合成了手性高分子P-1与P-2,并用1HNMR、13CNMR、FTIR、UV、热分析、荧光光谱、GPC和CD等分析方法进行了表征.手性高分子P-1和P-2都能发射较强的蓝色荧光;在高分子侧链上引入丁氧基后使得手性高分子的溶解性能增强,并具有良好的成膜性能;在高分子主链引入亲电子的噁二唑生色团能使其特别适合于作为空穴电子传输层,对氧和热特别稳定,是一类潜在的光电高分子材料.  相似文献   

8.
在Pd(PPh3)4催化下,将单体(S)-6,6′-二溴-2,2′-二正丁氧基-1,1′-联萘[(S)-M-1]和(R)-6,6′-二溴-2,2′-二正丁氧基-1,1′-联萘[(R)-M-1]分别与2,5-二(4-三正丁基锡基苯)-1,3,4-噁二唑(M-2)通过Stille交叉耦合反应合成了手性高分子P-1与P-2,并用1HNMR、13CNMR、FTIR、UV、热分析、荧光光谱、GPC和CD等分析方法进行了表征.手性高分子P-1和P-2都能发射较强的蓝色荧光;在高分子侧链上引入丁氧基后使得手性高分子的溶解性能增强,并具有良好的成膜性能;在高分子主链引入亲电子的噁二唑生色团能使其特别适合于作为空穴电子传输层,对氧和热特别稳定,是一类潜在的光电高分子材料.  相似文献   

9.
分别以1,3,5-苯三甲酸(H3BTC)、苯六甲酸(H6MTA)和1,2,3,4,5,6-环己六甲酸(H6CCA)为配体合成了Eu(III)的二元发光配合物Eu(BTC)·2H2O, Eu2(MTA)·4H2O 和Eu2(CCA)·4H2O. 通过元素分析、红外光谱和等离子体原子发射光谱对其化学组成进行了结构表征, 表征结果与理论吻合良好. 利用荧光分度计, 研究了所制备配合物室温条件下的荧光性能(荧光激发光谱、发射光谱、荧光寿命和量子效率), 结果表明: 该三种配合物在紫外光照射下, 均发射Eu(III)离子的特征红光, 其中Eu2(MTA)·4H2O(量子效率=10.25%, 荧光寿命=0.36 ms)的荧光性能最好, 这说明配体H6MTA 的能级与Eu3+离子能级匹配程度很好. 另外, 通过热分析对配合物的热稳定性进行了分析, 结果表明: 该三种配合物均具有良好的热稳定性, 主要分解温度远高于其他β-二酮配合物.  相似文献   

10.
手性(R,R)-1,2-环己二胺分别与具有偶数亚甲基烷烃链的S-M-1(4,4'-(butane-1,4-diylbis(oxy))-dibenzaldehyde),S-M-2(4,4'-(octane-1,8-diylbis(oxy))dibenzaldehyde)和S-M-3(4,4'-(dodecane-1,12-diylbis(oxy))-dibenzaldehyde)单元,通过亲核取代-消除反应合成相应的新颖柔性高分子P-1,P-2和P-3.Eu(TTA)3·2H2O分别与P-1,P-2和P-3反应制备相应的柔性稀土Eu(Ⅲ)高分子P-4,P-5和P-6.通过对烷烃主链数目的有效调控,能够有效调控稀土Eu(Ⅲ)的发光效率和圆偏振荧光的不对称因子(glum).实验证明,在一定的激发状态下,稀土高分子仅仅显示Eu(Ⅲ)的红色特征荧光,归于高分子将激发态能量基本传递给配位中心的Eu(Ⅲ)离子.通过对稀土Eu(Ⅲ)高分子的荧光寿命和量子效率表征,P-4,P-5和P-6的发光效率依次降低.P-4与P-5圆偏振荧光(CPL)的最大不对称因子(glum)分别为+0.0873和+0.0115,归属为电偶极跃迁(5D0→7F2);P-6最大不对称因子(glum)为+0.0539,归属为磁偶极跃迁(5D0→7F1).通过烷烃主链数目的差异实现对其CPL的有效调控,调控机理归于高分子折叠所引起稀土Eu(Ⅲ)不对称配位环境的变化.  相似文献   

11.
12.
Chiral conjugated polymers P‐1 and P‐2 were synthesized by the polymerization of (S)‐3,3′‐diiodo‐2,2′‐bisbutoxy‐1,1′‐binaphthyl and (S)‐6,6′‐dibromo‐2,2′‐bisbutoxy‐1,1′‐binaphthyl, respectively, with 5,5′‐divinyl‐2,2′‐bipyridine through a Heck cross‐coupling reaction. Chiral polymer complexes P‐C‐1 and P‐C‐2 were obtained by the bipyridine chelating coordination of P‐1 and P‐2 with Eu(TTA)3·2H2O (where TTA is 2‐thenoyltrifluoroacetonate). Polymers P‐1 and P‐2 and polymer complexes P‐C‐1 and P‐C‐2 exhibited intense circular dichroism signals, with negative and positive Cotton effects in their circular dichroism spectra. The chiral polymers showed strong green‐blue fluorescence because of the efficient energy migration from the extended π‐electronic structure of the conjugated polymer main to the chiral binaphthyl core. The chiral polymer complexes could have not only polymer fluorescence but also the characteristic fluorescence of Eu(III) (5D07F2) at a different excited wavelength. These kinds of chiral polymer complexes incorporating polybinaphthyls, bipyridine, and Eu(III) moieties are expected to provide an understanding of the relationship between the structure and properties of chiral polymer complexes. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 650–660, 2007  相似文献   

13.
一种双核铕配合物的合成、光致发光和电致发光性质研究   总被引:5,自引:0,他引:5  
合成了一个新的双核铕配合物Eu(TTA)3(tpphz)Eu(TTA)3(其中TTA=去质子化的α-噻吩甲酰三氟丙酮; tpphz=[3,2-a:2',3'-c:3',2'-h:2'',3''-j]四吡啶基吩嗪). 研究了该配合物的光致发光和电致发光性质. 一个四层电致发光器件ITO/TPD, 10 nm/Eu(TTA)3(tpphz)Eu(TTA)3, 20 nm/BCP, 20 nm/AlQ, 40 nm/Mg0.9Ag0.1, 200 nm/Ag, 100 nm表现出中心在633 nm处的宽带红光发射, 该宽带发射可能来源于双核Eu(III)配合物和TPD形成的激基复合物. 该器件的启动电压为10 V, 在18 V和135 mA/cm2时的最大亮度达146 cd/m2.  相似文献   

14.
The β‐diketonate‐based achiral polymer P‐1 could be synthesized by the polymerization of 3,7‐dibromo‐2,8‐dimethoxy‐5,5‐dioctyl‐5H‐dibenzo[b,d]silole ( M1 ) with (Z)?1,3‐bis(4‐ethynylphenyl)?3‐hydroxyprop‐en‐1‐one ( M2 ) via typical Sonogashira coupling reaction. The β‐diketonate unit in the main chain backbone of P‐1 can further coordinate with Eu(TTA)x [TTA? = 4,4,4‐trifluoro‐1‐(thiophen‐2‐yl)butane‐1,3‐dionate anion, X = 1, 2, 3] to afford corresponding Eu(III)‐containing polymer complexes. The resulting achiral polymer complex P‐2 (X = 2) can exhibit strong circular dichroism (CD) response toward both N‐Boc‐l and d‐ proline enantiomers. The CD signal was preliminarily attributed to coordination induction between chiral N‐Boc‐proline and the Eu(III) complex moiety. The linear regression analysis of CD sensing shows a good agreement between the magnitude of molar ellipticity and concentration of chiral N‐Boc‐l or d‐ proline, which indicates this kind Eu(III)‐containing achiral polymer complex can be used as a chiral probe for enantioselective recognition of N‐Boc‐l or d‐ proline enantiomers based on Cotton effect of CD spectra. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3080–3086  相似文献   

15.
A novel polymer P‐1 is prepared by the reaction of the monomer 5,5′‐divinyl‐2,2′‐bipyridine and Salen‐Zn(II) via Heck cross coupling. Interestingly, P‐1 can further incorporate with Eu(TTA)3·2H2O to generate copolymer P‐2 with two different metal centers. P‐2 exhibits exceptional dual emissive properties which can be tuned by excitation wavelength. For example, an orange fluorescence can be obtained when P‐2 is excited at 430 nm, whereas a red emission with a huge Stoke shift of 57 nm is observed when it is excited at 345 nm. The high wavelength emission can be attributed to Eu(III) (5D07F2), which is lit by an effective photoinduced energy transfer process between P‐1 and the Eu(TTA)3 complex. The properties of P‐2 have led to a better understanding of the energy transfer process between P‐1 and Eu(TTA)3 moieties.  相似文献   

16.
The heteropolytungstates [(Na)P5W30O110]4– (I), [(Na)Sb9W21O86]18– (II) and [(Na)As4W40O140]27– (III) and the monovacant Keggin structure of the general formula [XW11–xMoxO39]n– (X-Si, P; n = 7 for P and 8 for Si) (IV) as well as their europium(III) complexes were studied. The structures of I–IV as well as the europium(III) encrypted [(Eu)P5W30O110]12– (VI), [(Eu)Sb9W21O86]16– (VII), [(Eu)As4W40O140]25– (VIII) and sandwiched [Eu(XW11–xMoxO39)2]n– (n =11 for P and n = 13 for Si) (V) complexes were synthesized and spectroscopically characterized. The complexes were studied using UV-Vis absorption and luminescence, as well as the laser-induced europium ion luminescence spectroscopy. Absorption spectra of Nd(III) were used to characterize the complexes formed. Excitation and emission spectra of Eu(III) were obtained for solid complexes and their solutions. The relative luminescence intensities of the Eu(III) ion, expressed as the ratio of the two strongest lines at 594 nm and 615 nm, = I615/I594, which is sensitive to the environment of the primary coordination sphere about the Eu(III) ion, was calculated. In the case of the sandwiched [Eu(XW11–xMoxO39)2]n– complexes a linear dependence of the luminescence quantum yield of Eu(III) ion, , (calculated using [Ru(bpy)3]Cl2 as a standard) on the content of Mo (number of atoms, x) in the [Eu(XW11–xMoxO39)2]n– structure was observed.  相似文献   

17.
Eu3+,Tb3+混配配合物的激光诱导荧光   总被引:4,自引:0,他引:4  
利用激光诱导荧光技术研究了两种三价稀土金属离子的β-二酮与有机配体混配络合物中金属离子的寿命及其能级结构,得到了Eu^3+的能级常数。  相似文献   

18.
Linked to Alzheimer’s disease (AD), amyloids and tau-protein are known to contain a large number of cysteine (Cys) residues. In addition, certain levels of some common biogenic thiols (cysteine (Cys), homocysteine (Hcy), glutathione (GSH), etc.) in biological fluids are closely related to AD as well as other diseases. Therefore, probes with a selective interaction with the above-mentioned thiols can be used for the monitoring and visualizing changes of (bio)thiols in the biological fluids as well as in the brain of animal models of Alzheimer’s disease. In this study, new Eu(III), Tb(III), Gd(III) and Sm(III) complexes of 2,2′-bipyridine ligands containing TEMPO fragments as receptor units for (bio)thiols are reported. The presence of free radical fragments of the ligand in the complexes was proved by using the electronic paramagnetic resonance (EPR) method. Among all the complexes, the Eu(III) complex turned out to be the most promising one as luminescence- and spin-probe for the detection of biogenic thiols. The EPR and fluorescent titration methods showed the interaction of the resulting complex with free Cys and GSH in solution. To study the practical applicability of the probes for the monitoring of AD in-vivo, by using the above-mentioned Eu(III)-based probe, the staining of the brain of mice with amyloidosis and Vero cell cultures supplemented with the cysteine-enriched medium was studied as well as the fluorescence titration of Bovine Serum Albumin, BSA (as the model for the thiol moieties containing protein), was carried out. Based on the results of fluorescence titration, the formation of a non-covalent inclusion complex between the above-mentioned Eu(III) complex and BSA was suggested.  相似文献   

19.
Solvent extraction and potentiometric titration methods have been used to measure the stability constants of Cm(III), Am(III), and Eu(III) with both linear and cyclic carboxylates and polyaminocarboxylates in an ionic strength of 0.1?mol?L?1 (NaClO4). Luminescence lifetime measurements of Cm(III) and Eu(III) were used to study the change in hydration upon complexation over a range of concentrations and pH values. Aromatic carboxylates, phthalate (1,2 benzene dicarboxylates, PHA), trimesate (1,3,5 benzene tricarboxylates, TSA), pyromellitate (1,2,4,5 tetracarboxylates, PMA), hemimellitate (1,2,3 benzene tricarboxylates, HMA), and trimellitate (1,2,4 benzene tricarboxylates, TMA) form only 1?:?1 complexes, while both 1?:?1 and 1?:?2 complexes were observed with PHA. Their complexation strength follows the order: PHA~TSA>TMA>PMA>HMA. Carboxylate ligands with adjacent carboxylate groups are bidentate and replace two water molecules upon complexation, while TSA displaces 1.5 water molecules of hydration upon complexation. Only 1?:?1 complexes were observed with the macrocyclic dicarboxylates 1,7-diaza-4,10,13-trioxacyclopentadecane-N,N′-diacetate (K21DA) and 1,10-diaza-4,7,13,16-tetraoxacyclooctadecane-N,N′-diacetate (K22DA); both 1?:?1 and 1?:?2 complexes were observed with methyleneiminodiacetate (MIDA), hydroxyethyleneiminodiacetate (HIDA), benzene-1,2-bis oxyacetate (BDODA), and ethylenediaminediacetate (EDDA), while three complexes (1?:?1, 1?:?2, and 1?:?3) were observed with pyridine 2,6 dicarboxylates (DPA) and chelidamate (CA). The complexes of M-MIDA are tridentate, while that of M-HIDA is tetradentate in both 1?:?1 and 1?:?2 complexes. The M-BDODA and M-EDDA complexes are tetradentate in the 1?:?1 and bidentate in the 1?:?2 complexes. The complexes of M-K22DA are octadentate with one water molecule of hydration, while that of K21DA is heptadentate with two water molecules of hydration. Simple polyaminocarboxylate 1,2 diaminopropanetetraacetate (PDTA) and ethylenediamine N,N′-diacetic-N,N′-dipropionate (ENDADP) like ethylenediaminetetraacetate (EDTA) form only 1?:?1 complexes and their complexes are hexadentate. Polyaminocarboxylates with additional functional groups in the ligand backbone, e.g., ethylenebis(oxyethylenenitrilo) tetraacetate (EGTA), and 1,6 diaminohexanetetraacetate (HDTA) or with additional number of groups in the carboxylate arms diethylenetriamine pentaacetato-monoamide (DTPA-MA), diethylenetriamine pentaacetato-bis-methoxyethylamide (DTPA-BMEA), and diethylenetriamine pentaacetato-bis glucosaamide (DTPA-BGAM) are octadentate with one water molecule of hydration, except N-methyl MS-325 which is heptadentate with two water molecules of hydration and HDTA which is probably dimeric with three water molecules of hydration. Macrocyclic tetraaminocarboxylate, 1,4,7,10-tetraazacyclododecanetetraacetate (DOTA) forms only 1?:?1 complex which is octadentate with one water molecule of hydration. The functionalization of these carboxylates and polycarboxylates affect the complexation ability toward metal cations. The results, in conjunction with previous results on the Eu(III) complexes, provide insight into the relation between ligand steric requirement and the hydration state of the Cm(III) and Eu(III) complexes in solution. The data are discussed in terms of ionic radii of the metal cations, cavity size, basicity, and ligand steric effects upon complexation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号