首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fluid flow in a rotating cylindrical container of radius Rw and height H with a co-axially rotating disk of radius Rd at the fluid surface is numerically investigated. The container and the disk rotate with angular velocities Ωw and Ωd, respectively. We solve the axisymmetric Navier-Stokes equations using a finite-volume method. The effects of the relative directions and magnitudes of the disk and container rotations are studied. The calculations are carried out with various ratios of Ωw and Ωd for H/Rw = 2 and Rd/Rw = 0.7. Streamlines and velocity vectors in the meridional plane and azimuthal velocities are obtained. The flow fields in the meridional plane are discussed with relation to azimuthal velocities in the interior of the container. The numerical results are also compared with experimental data.  相似文献   

2.
The fluid flowing in a rotating curved duct is subjected to both the Coriolis force due to a rotation and the centrifugal force due to a curvature. In this paper, the combined effects of the two forces on the flows in rotating curved rectangular ducts are examined numerically. According to the aspect ratio of the cross-section, the rectangular ducts are divided into three types: η>1, η=1, η<1, where η is the aspect ratio. The variations of the flow structures with the force ratio F (the ratio of the Corislis force to the centrifugal force) are studied in detail and many hitherto unknown flow patterns are found. The effects of the force ratio and the aspect ratio of the cross-section on the friction factor are also examined. Present results show both the characteristics of the secondary flow, axial flow and the natures of the friction factor.  相似文献   

3.
A perturbation solution of the fully developed flow through a pipe of circular cross-section, which rotates uniformly around an axis oriented perpendicularly to its own, is considered. The perturbation parameter is given by R = 2Ωa2/ν in terms of the angular velocity Ω, the pipe radius a and the kinematic viscosity ν of the fluid. The two coupled non-linear equations for the axial velocity ω and the streamfunction ? of the transverse (secondary) flow lead to an infinite system of linear equations. This system allows first the computation of a given order ?n, n ? 1, of the perturbation expansion ? = ∑ Rn?n in terms of ωn-1, the (n-1)-th order of the expansion ω = ∑ Rnωn, and of the lower orders ?1,…,?n ? 1. Then it permits the computation of ωn from ω0,…,ωn ? 1 and ?1,…,?;n. The computation starts from the Hagen–Poiseuille flow ω0, i.e. the perturbation is around this flow. The computations are performed analytically by computer, with the REDUCE and MAPLE systems. The essential elements for this are the appropriate co-ordinates: in the complex co-ordinates chosen the two-dimensional harmonic (Laplace, Δ) and biharmonic (Δ2) operators are ideally suited for (symbolic) quadratures. Symmetry considerations as well as analysis of the equations for ωn, ?n and of the boundary conditions lead to general (polynomial) formulae for these functions, with coeffcients to be determined. Their determination, order by order, implies, in complex co-ordinates, only (symbolic) differentiation and quadratures. The coefficients themselves are polynomials in the Reynolds number c of the (unperturbed) Hagen–Poiseuille flow. They are tabulated in the paper for the orders n ? 6 of the perturbation expansion.  相似文献   

4.
This paper reports a convergent numerical algorithm for the Upper-Convected Maxwell (UCM) fluid between two eccentric cylinders at various eccentricity ratios (?); the outer cylinder is stationary, and the inner one rotating. The problem is solved by an unstructured control volume method (UCV), which is designed for a general viscoelastic flow problem with an arbitrary computational domain. A self-consistent false diffusion technique and an iteration scheme are used in combination to solve the problem. The computations of the UCM fluid using the numerical algorithm are carried out to a higher value of the Deborah number (De) at each eccentricity tested than hitherto possible with previous numerical simulations. The solutions are compared with previous numerical results, confirming the effectiveness of the UCV method as a general technique for solving viscoelastic flow problems.  相似文献   

5.
Discharge coefficients for flow through holes normal to a rotating shaft   总被引:2,自引:0,他引:2  
A possible design for a more compact gas turbine engine uses contra-rotating high pressure (HP) and intermediate pressure (IP) turbine discs. Cooling air for the IP turbine stages is taken from the compressor and transferred to the turbine stage via holes in the drive shaft. The aim of this work was to investigate the discharge coefficient characteristics of the holes in this rotating shaft, and, in particular, to ascertain whether the sense of rotation of the shaft with respect to the discs affected these significantly. This paper reports mostly on experimental measurements of the discharge coefficients. Some CFD modelling of this flow was carried out and this has helped to explain the experimental work. The experimental results show the effects on the discharge coefficient of rotational speed, flow rate, and co- and contra-rotations of the shaft relative to the discs. The measured values of the discharge coefficient are compared with established experimental data for non-rotating holes in the presence of a cross-flow. For stationary shaft and discs, co-rotation of the shaft and discs and differential rotation with the disc speed less than the shaft (in the same rotational direction), the discharge coefficients are in reasonable agreement with these data. For differential rotation (including contra-rotation) with the disc speed greater than the shaft, there is a significant decrease in discharge coefficient.  相似文献   

6.
This study is concerned with the magnetohydrodynamic (MHD) rotating boundary layer flow of a viscous fluid caused by the shrinking surface. Homotopy analysis method (HAM) is employed for the analytic solution. The similarity transformations have been used for reducing the partial differential equations into a system of two coupled ordinary differential equations. The series solution of the obtained system is developed and convergence of the results are explicitly given. The effects of the parameters M, s and λ on the velocity fields are presented graphically and discussed. It is worth mentioning here that for the shrinking surface the stable and convergent solutions are possible only for MHD flows.  相似文献   

7.
The induced unsteady flow due to a stretching surface in a rotating fluid, where the unsteadiness is caused by the suddenly stretched surface is studied in this paper. After a similarity transformation, the unsteady Navier–Stokes equations have been solved numerically using the Keller-box method. Also, the perturbation solution for small times as well as the asymptotic solution for large times, when the flow becomes steady, has been obtained. It is found that there is a smooth transition from the small time solution to the large time or steady state solution.  相似文献   

8.
Development of thin two-layer film over a uniformly rotating disk is studied numerically under the assumption of planar interface and free surface. Similarity transformation is applied to transform the Navier-Stokes equations into a set of coupled non-linear, unsteady partial differential equations. This set of equations are solved numerically by using the finite-difference technique. It is observed that the rate of film thickness varies at different time zone depending on the rate of rotational speed of the disk. A physical explanation is provided to justify this anomalous behaviour. It is observed that, smaller thickness on the top layer enhance the initial rate of film thinning. But the overall effect of density, viscosity and the initial film thickness ratio are found to be insensitive to the final film thickness at large time.  相似文献   

9.
The linear stability of the developing flow in an axially rotating pipe is analyzed using parabolized stability equations (PSE). The results are compared with those obtained from a near-parallel stability approximation that only takes into account the axial variation of the basic flow. Though the PSE results obviously coincide with the near-parallel ones far downstream, when the flow has reached a Hagen-Poiseuille axial velocity profile with superimposed solid-body rotation, they differ significantly in the developing region. Therefore, the onset of instability strongly depends on the axial evolution of the perturbations. The PSE results are also compared with experimental data from Imao et al. [Exp. Fluids 12 (1992) 277], showing a good agreement in the frequencies and wavelengths of the unstable disturbances, that take the form of spiral waves. Finally, a simple method for detecting one of the conditions to characterize the onset of absolute instability using PSE is given.  相似文献   

10.
11.
Fully-developed turbulent flow in a concentric annulus, r1/r2 = 0.5, Reh = 12,500, with the outer wall rotating at a range of rotation rates N = Uθ,wall/Ub from 0.5 up to 4 is studied by large-eddy simulations. The focus is on the effects of moderate to very high rotation rates on the mean flow, turbulence statistics and eddy structure. For N up to ∼2, an increase in the rotation rate dampens progressively the turbulence near the rotating outer wall, while affecting only mildly the inner-wall region. At higher rotation rates this trend is reversed: for N = 2.8 close to the inner wall turbulence is dramatically reduced while the outer wall region remains turbulent with discernible helical vortices as the dominant turbulent structure. The turbulence parameters and eddy structures differ significantly for N = 2 and 2.8. This switch is attributed to the centrifuged turbulence (generated near the inner wall) prevailing over the axial inertial force as well as over the counteracting laminarizing effects of the rotating outer wall. At still higher rotation, N = 4, the flow gets laminarized but with distinct spiralling vortices akin to the Taylor–Couette rolls found between the two counter-rotating cylinders without axial flow, which is the limiting case when N approaches to infinity. The ratio of the centrifugal to axial inertial forces, Ta/Re2  N2 (where Ta is the Taylor number) is considered as a possible criterion for defining the conditions for the above regime change.  相似文献   

12.
A numerical analysis of the flow pattern in the inlet region of a circular pipe rotating steadily about an axis parallel to its own is presented. Both finite cell and finite element methods are used to analyse the problem and they give qualitatively similar results which show that a swirling fluid motion is induced in the pipe inlet region. The analyses show that the direction of swirl is opposite to that of the pipe rotation when viewed along the flow axis and that its magnitude depends on the speed of pipe rotation and throughflow Reynolds number. Neither numerical analysis predicts the marked upturn in friction factor (or pressure drop) which has been observed experimentally. However, a dependence on the pipe inlet boundary conditions is demonstrated.  相似文献   

13.
The present paper is concerned with a class of exact solutions to the steady Navier-Stokes equations for the incompressible Newtonian viscous fluid flow motion due to a porous disk rotating with a constant angular speed. The three-dimensional equations of motion are treated analytically yielding derivation of exact solutions with suction and injection through the surface included. The well-known thinning/thickening flow field effect of the suction/injection is better understood from the exact velocity equations obtained. Making use of this solution, analytical formulas corresponding to the permeable wall shear stresses are extracted.Interaction of the resolved flow field with the surrounding temperature is further analyzed via the energy equation. As a result, exact formulas are obtained for the temperature field which take different forms depending on whether suction or injection is imposed on the wall. The impacts of several quantities are investigated on the resulting temperature field. In accordance with the Fourier‘s heat law, a constant heat transfer from the porous disk to the fluid takes place. Although the influence of dissipation varies, suction enhances the heat transfer rate as opposed to the injection.  相似文献   

14.
The flow field of a channel rotating about the streamwise axis is analyzed experimentally and numerically. The current investigations were carried out at a bulk velocity based Reynolds number of Rem = 2850 and a friction velocity based Reynolds number of Reτ = 180, respectively. Particle-image velocimetry (PIV) measurements are compared with large-eddy simulation data to show earlier direct numerical simulation findings to generate too large a reverse flow region in the center region of the spanwise flow. The development of the mean spanwise velocity distribution and the influence of the rotation on the turbulent properties, i.e., the Reynolds stresses and the two-point correlations of the flow, are confirmed in both investigations. The rotation primarily influences those components of the Reynolds shear stresses, which contain the spanwise velocity component. The size of the correlation areas and thus the length scales of the flow generally grow in all three coordinate directions leading to longer structures. Furthermore, experimental results of the same channel flow at a significantly lower bulk Reynolds number of Rem, l = 665, i.e., a laminar flow in a non-rotating channel, are introduced. The experiments show the low Reynolds number flow to become turbulent under rotation and to develop the same characteristics as the high Reynolds number flow.  相似文献   

15.
This paper studies the effects of a circular magnetic field on the flow of a conducting fluid about a porous rotating disk. Using modern quasi-Newton and globally convergent homotopy methods, numerical solutions are obtained for a wide range of magnetic field strengths, suction and injection velocities and Alfven and disk speeds. Results are presented graphically in terms of three non-dimensional parameters. There is excellent agreement with previous work and asymptotic formulae.  相似文献   

16.
A numerical simulation is performed to investigate the flow induced by a sphere moving along the axis of a rotating cylindrical container filled with the viscous fluid. Three‐dimensional incompressible Navier–Stokes equations are solved using a finite element method. The objective of this study is to examine the feature of waves generated by the Coriolis force at moderate Rossby numbers and that to what extent the Taylor–Proudman theorem is valid for the viscous rotating flow at small Rossby number and large Reynolds number. Calculations have been undertaken at the Rossby numbers (Ro) of 1 and 0.02 and the Reynolds numbers (Re) of 200 and 500. When Ro=O(1), inertia waves are exhibited in the rotating flow past a sphere. The effects of the Reynolds number and the ratio of the radius of the sphere and that of the rotating cylinder on the flow structure are examined. When Ro ? 1, as predicted by the Taylor–Proudman theorem for inviscid flow, the so‐called ‘Taylor column’ is also generated in the viscous fluid flow after an evolutionary course of vortical flow structures. The initial evolution and final formation of the ‘Taylor column’ are exhibited. According to the present calculation, it has been verified that major theoretical statement about the rotating flow of the inviscid fluid may still approximately predict the rotating flow structure of the viscous fluid in a certain regime of the Reynolds number. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

17.
Linearized multidimensional flow in a gas centrifuge can be described away from the ends by Onsager's pancake equation. However a rotating annulus results in a slightly different set of boundary conditions from the usual symmetry at the axis of rotation. The problem on an annulus becomes ill-posed and requires some special attention. Herein we treat axially linear inner and outer rotor temperature distributions and velocity slip. An existence condition for a class of non-trivial, one-dimensional solutions is given. New exact solutions in the infinite bowl approximation have been derived containing terms that are important at finite gap width and non-vanishing velocity slip. The usual one-dimensional, axially symmetric solution is obtained as a limit. Our previously reported finite element algorithm has been extended to treat this new class of problems. Effects of gap width, temperature and slip conditions are illustrated. Lastly, we report on the compressible, finite length, circular Couette flow for the first time.  相似文献   

18.
I.IntroductionTilenowaroundarotatitlgcircularcylinderisacomplexunsteadyone.ItincludesmanycomplicatedtlowphenomenaSuchastheunsteadyboundarylayerseparation,thegenerationandsheddingofvorticesandtheinteractionwitllwakesetc..Therotationofacircularcylillderarounditsaxiswilldecreaseandsuppresstheflowseparationandvortexsheddingononesideofthecylinder,whileincreasinganddevelopingonanothel,side.Atransverseliftforcewillactonthecylinder,andthisphenomenoniscalledtheMagnuseffect.Themost.importantparameterf…  相似文献   

19.
A numerical investigation of flow around a sphere is performed and compared with previous studies. Here, a second-order accurate, finite volume method is used in order to predict the instantaneous and time-averaged flow characteristics using large eddy simulation (LES) on the multi-block grid system. Namely, the objectives of this article are: (i) the presentation of flow structures in the wake region downstream of the sphere with a wide variety of flow properties such as the distribution of velocity vectors, patterns of streamlines, Reynolds stress correlations, root mean square of velocity components and other time-averaged flow data in order to reveal the vortical flow structures in detail and (ii) to demonstrate the abilities of computational methods in simulation of vortical flow data. Finally, it has been concluded that there are good agreements between the experimental results and numerical predictions.  相似文献   

20.
A computer program has been developed to predict laminar source-sink flow in a rotating cylindrical cavity. Although the program is based on a standard finite difference technique for recirculating flow, it incorporates two novel features. Step changes in grid size are employed to obtain sufficient resolution in the boundary layers and special treatment is given to the solution of the pressure correction equations, in the ‘SIMPLE’ algorithm, in order to improve the convergence properties of the method. Results are presented both for the flow in an infinite rotating cylindrical annulus and a finite rotating cylindrical cavity, with the inner cylindrical surface acting as a uniform source and the outer cylinder as a sink. These show good agreement with existing analytical solutions and illustrate some of the problems associated with the computation of rapidly rotating flows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号