首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report on ab-initio calculations of the electronic structure and optical absorption response of the black dye sensitizer in gas phase. We show that, despite the large size of this molecule, the second-order multiconfiguration quasi-degenerate perturbation theory (MC-QDPT) can be used to calculate vertical excitation energies, oscillator strengths and optical absorption spectra. The zeroth-order reference states entering perturbation calculations are complete active space (CAS) configuration interaction (CI) wave functions computed for 12 active electrons distributed in 12 active orbitals. We found that the CI approach is not enough for taking into account the strong dynamical correlation effects in this system. In fact, the excitation energies of the CAS-CI target states are strongly renormalized by the MC-QDPT calculations. In the calculated absorption spectra, the analysis of the perturbed wavefunctions revealed that the stronger absorption bands correspond to metal-to-ligand and ligand-to-ligand charge transfer processes. Comparison with independent time-dependent extension (TDDFT) calculations performed with different functionals shows that corrections to the long-range behavior of the functional is pivotal to achieve agreement with the MC-QDPT results.  相似文献   

2.
A theoretical calculation of the ground and first excited states of two 7-phenylamino-substituted coumarin compounds are performed. In order to study the effect of phenyl substituted in amino group and fluorine atoms substituted in methyl group, 7-amino-4-methyl coumarin (C120) and 7-amino-4-(trifluoromethyl) coumarin (C151) were also studied. The geometries of the ground state and the first ground state were optimized using density function theory and configuration interaction singles levels of theory. Molecular orbitals (MO) of the ground and first excited states of the four coumarin compounds were obtained to explain the change of the structures. ZINDO and TD-DFT methods with different basis sets were applied to predict the UV absorption spectra. The solvent effect had also been taken into account using self-consistent isodensity polarized continuum model. The predicted spectra are in agreement with the experimental data.  相似文献   

3.
《Chemical physics letters》1987,136(5):392-397
The Be-H2 insertion reaction is used as a model to study the application of quasidegenerate many-body perturbation theory (QDMBPT) to polyatomic molecules where the pattern of quasidegenerate orbitals varies greatly with geometry. Full active valence space QDMBPT calculations are compared with the exact solutions within the basis and with previous QDMBPT computations that retain only a pair of quasidegenerate valence orbitals.  相似文献   

4.
The efficacy of several multiconfiguration self-consistent field (MCSCF) methods in the subsequent spin-orbit coupling calculations was studied. Three MCSCF schemes to generate molecular orbitals were analyzed: state-specific, state-averaged, and dynamically weighted MCSCF. With Sn(2)(+) as the representative case, we show that the state-specific MCSCF orbitals lead to discontinuities in potential energy curves when avoided crossings of electronic states occur; this problem can be solved using the state-averaged or dynamically weighted MCSCF orbitals. The latter two schemes are found to give similar results when dynamic electron correlation is considered, which we calculated at the level of multiconfigurational quasidegenerate perturbation theory (MCQDPT). We employed the recently developed Douglas-Kroll spin-orbit adapted model core potential, ZFK3-DK3, and the dynamically weighted MCSCF scheme to calculate the spectroscopic constants of the mono-hydrides and compared them to the results obtained using the older set of potentials, MCP-TZP. We also showed that the MCQDPT tends to underestimate the dissociation energies of the hydrides and discussed to what extent coupled-cluster theory can be used to improve results.  相似文献   

5.
In this paper, the structure and spectroscopic parameters of the C5 cluster are determined using multiconfigurational quantum chemical methods as implemented in the MOLCAS software. A number of spectroscopic properties (band center positions, l-doubling parameters, and rotational constants) have been characterized. From the new results, the assignments of previous astrophysical observations [J. Goicoechea et al., Astrophys. J. 609, 225 (2004)] are discussed. A detailed exploration of the global potential energy surface confirms that C5 has a X1Sigmag+ linear isomer of prominent stability and, at least, three minimum energy structures showing singlet electronic ground states. Two of them are cyclic and one has a nonplanar geometry. Vertical and adiabatic electronic transitions and vibrational spectroscopic parameters are determined for the most stable linear isomer using multiconfigurational second order perturbation theory (CASPT2) using an active space containing 12 valence orbitals with 12 active electrons and extended ANO-type basis sets. The infrared spectrum has been analyzed from an anharmonic force field derived form the local surface, determined from the energies of a grid of 1350 geometries. The force field includes four coupling terms. The CASPT2 band center position of the nu7(piu) anharmonic fundamental has been calculated to be at 102 cm(-1), which validates the assignment to C5 of the pattern of bands centered at 102 cm(-1) observed with the ISO telescope.  相似文献   

6.
Ab initio approaches of quantum chemistry, including the fragment molecular orbital (FMO) method, as well as the multiconfigurational quasidegenerate perturbation theory (XMCQDPT2) and time-dependent density functional theory (TD DFT) were applied to compute optical spectra of a polyene dye molecule on the surface of titanium dioxide.  相似文献   

7.
We calculated the two lowest electronically adiabatic potential energy surfaces of ammonia in the region of the conical intersection and at a sequence of geometries along which one of the N-H bonds is broken. We employed both a multireference (MR) method and a single-reference (SR) method. The MR calculations are based on multiconfiguration quasidegenerate perturbation theory (MC-QDPT) with a 6-311+G(3df,3pd) basis set. The SR calculations, carried out with the same basis, employ the completely renormalized equation-of-motion coupled-cluster method with singles and doubles, and a noniterative treatment of triples, denoted CR-EOMCCSD(T). At 91 geometries used for comparison, including geometries near a conical intersection, the surfaces agree to 7% on average.  相似文献   

8.
Multireference [complete active space self-consistent field (CASSCF) and multiconfigurational quasidegenerate perturbation theory (MCQDPT)] and single-reference ab initio (Moller-Plesset second order perturbation theory (MP2) and coupled clusters with singles, doubles and noniterative triples [CCSD(T)]) and density functional theory (PBE and B3LYP) electronic structure calculations of V(C(6)H(6))(+) half-sandwich in the states of different multiplicities are described and compared. Detailed analyses of the geometries and electronic structures of the all found states are given; adiabatic and diabatic dissociation energies are estimated. The lowest electronic state of V(C(6)H(6))(+) half-sandwich was found to be the quintet (5)B(2) state with a slightly deformed upside-down-boat-shaped benzene ring and d(4) configuration of V atom, followed by a triplet (3)A(2) state lying about 4 kcal/mol above. The lowest singlet state (1)A(1)(d(4)) lies much ( approximately 28 kcal/mol) higher. MCQDPT calculated adiabatic dissociation energy (53.6 kcal/mol) for the lowest (5)B(2)(d(4)) state agrees well with the current 56.4 (54.4) kcal/mol experimental estimate, giving a preference to the lower one. Compared to MCQDPT, B3LYP hybrid exchange-correlation functional provides the best results, while CCSD(T) performs usually worse. Gradient-corrected PBE calculations tend to systematically overestimate metal-benzene binding in the row quintet相似文献   

9.
We develop a model effective Hamiltonian for describing the electronic structures of first-row transition metals in aqueous solutions using a quasidegenerate perturbation theory. All the states consisting of 3d(n) electronic configurations are determined by diagonalizing a small effective Hamiltonian matrix, where various intermolecular interaction terms such as the electrostatic, polarization, exchange, charge transfer, and three-body interactions are effectively incorporated. This model Hamiltonian is applied to constructing the ground and triplet excited states potential energy functions of Ni(2+) in aqueous solution, based on the ab initio multiconfiguration quasidegenerate perturbation theory calculations. We perform molecular dynamics simulation calculations for the ground state of Ni(2+) aqueous solution to calculate the electronic absorption spectral shape as well as the ground state properties. Agreement between the simulation and experimental spectra is satisfactory, indicating that the present model can well describe the Ni(2+) excited state potential surfaces in aqueous solution.  相似文献   

10.
李会学  唐惠安  杨声  萧泰 《物理化学学报》2007,23(11):1781-1786
用密度泛函B3LYP方法对3-(3’-吡啶基)-6-芳基-1,2,4-三唑并[3,4-b]-1,3,4-噻二唑衍生物(芳基为苯基、3-吡啶基和苯乙烯基)进行基态几何构型全优化, 计算分子的电离势IP和电子亲和势EA等相关能量, 并用Zerner间略微分重叠(ZINDO)和含时密度泛函(TDDFT)方法计算吸收光谱, 用单组态相互作用方法(CIS)优化三种化合物分子的S1激发态结构, 分析其能量与发射光谱的关系, 计算溶剂中分子的吸收和发射光谱, 并与实验结果对照. 计算结果表明, 从3-(3’-吡啶基)-6-苯基-1,2,4-三唑并[3,4-b]-1,3,4-噻二唑分子(化合物A)到3-(3’-吡啶基)-6-(3’-吡啶基)-1,2,4-三唑并[3,4-b]-1,3,4-噻二唑分子(化合物B)以及3-(3’-吡啶基)-6-对乙烯苯基-1,2,4-三唑并[3,4-b]-1,3,4-噻二唑分子(化合物C)的电子亲和势依次增大, 愈来愈容易接受电子, 吸收光谱和发射光谱红移.  相似文献   

11.
Highly accurate excitation spectra are predicted for the low-lying n-π* and π-π* states of uracil for both the gas phase and in water employing the complete active space self-consistent field (CASSCF) and multiconfigurational quasidegenerate perturbation theory (MCQDPT) methods. Implementation of the effective fragment potential (EFP) solvent method with CASSCF and MCQDPT enables the prediction of highly accurate solvated spectra, along with a direct interpretation of solvent shifts in terms of intermolecular interactions between solvent and solute. Solvent shifts of the n-π* and π-π* excited states arise mainly from a change in the electrostatic interaction between solvent and solute upon photoexcitation. Polarization (induction) interactions contribute about 0.1 eV to the solvent-shifted excitation. The blue shift of the n-π* state is found to be 0.43 eV and the red shift of the π-π* state is found to be -0.26 eV. Furthermore, the spectra show that in solution the π-π* state is 0.4 eV lower in energy than the n-π* state.  相似文献   

12.
Ab initio electronic structure theory calculations on cluster models support the characterization of the signature absorption spectrum of a solvated hydroxyl OH radical as a solvent-to-solute charge transfer state modulated by the hydrogen-bonding environment. Vertical excited states in OH(H2O)n clusters (n = 0-7, 16) calculated at the TDDFT level of theory (with companion calculations at the EOM-CCSD level of theory for n 相似文献   

13.
Photophysical investigations of coumarin-7 (C7) dye in different solvents using absorption, steady-state fluorescence and time-resolved fluorescence measurements reveal the behavioral changes of the dye in nonpolar and other solvents. In moderate to higher polarity solvents, the experimental parameters such as fluorescence quantum yield (Phif), fluorescence lifetime (tauf), radiative rate constant (k(f)), nonradiative rate constant (k(nr)) and Stokes' shift (Deltav) follow almost linear correlations with the Lippert-Mataga solvent polarity parameter Deltaf but show unusual deviations in nonpolar solvents. From the observed results, it is inferred that the dye exists in a planar intramolecular charge transfer structure in moderate to higher polarity solvents, but in nonpolar solvents, the dye exists in a nonplanar structure with its 7-NEt2 group adopting a pyramidal type of configuration. Unlike some of the other coumarin dyes, namely coumarin-120 (C120) (4-CH3-7-NH2-1,2-benzopyrone) and coumarin-151 (C151) 4-CF3-7-NH2-1,2-benzopyrone), which also show similar structural changes in nonpolar and other solvents, the C7 dye does not show any activation-controlled deexcitation process in nonpolar solvents. This is attributed to the very slow flip-flop motion of the 7-NEt2 group of the C7 dye in comparison with the very fast flip-flop motion of the 7-NH2 group in the C120 and C151 dyes. Qualitative potential energy diagrams are presented to rationalize the observed results of C7 dye and to compare these with those of the other dyes such as C120 and C151. A support for the observed results and interpretation has also been obtained from quantum chemical calculations on the structures of the C7 dye.  相似文献   

14.
15.
运用密度泛函理论中的杂化泛函B3LYP研究了高效太阳能电池新型染料敏化剂JK16和JK17的几何结构、电子结构、极化率和超极化率, 并用含时密度泛函理论(TDDFT)研究了电子吸收谱. 基于含时密度泛函理论计算结果和实验结果的定性符合, 指认了在可见和近紫外区的吸收属于π→π*跃迁. 计算结果还表明JK16和JK17激发能最低的三个跃迁都与光诱导电荷转移过程有关, 而且二-二甲基芴氨基苯并噻吩基团对光电转换过程的敏化起主要作用, 发生于染料敏化剂JK16、JK17和TiO2界面之间的电荷转移是由染料分子激发态向半导体导带的电子注入过程. 此外, 通过对JK16和JK17的比较, 分析了亚乙烯基对几何结构、电子结构和谱学特性的影响.  相似文献   

16.
A combined theoretical and experimental study of the structure, optical, and photophysical properties of four 2,7-carbazolenevinylene-based derivatives in solution is presented. Geometry optimizations of the ground states of PCP, PCP-CN, TCT, and TCT-CN were carried out using the density functional theory (DFT/B3LYP/6-31G*). It is found that PCP and TCT are nearly planar in their ground electronic states (S0), whereas the cyano derivatives are more twisted. The nature and the energy of the first singlet-singlet electronic transitions have been obtained from time-dependent density functional theory (TDDFT) calculations performed on the optimized geometries. For all the compounds, excitation to the S1 state corresponds mainly to the promotion of one electron from the highest-occupied molecular orbital to the lowest-unoccupied molecular orbital, and the S1 <-- S0 electronic transition is strongly allowed and polarized along the long axis of the molecular frame. The optimization (relaxation) of the first singlet excited electronic state (S1) has been done using the restricted configuration interaction (singles) (RCIS/6-31G*) approach. It is observed that all four investigated compounds become more planar in their S1 relaxed excited state. Electronic transition energies from the relaxed excited states have been obtained from TDDFT calculations performed on the S1-optimized geometries. The absorption and fluorescence spectra of the carbazolenevinylenes have been recorded in chloroform. A good agreement is obtained between TDDFT vertical transitions energies and the (0,0) absorption and fluorescence bands. The change from phenylene to thiophene rings as well as the incorporation of cyano substituents induce bathochromic shifts in the absorption and fluorescence spectra. From the analysis of the energy of the frontier molecular orbitals, it is believed that thiophene rings and CN substituents induce some charge-transfer character to the first electronic transition, which is responsible for the red shifts observed. Finally, the fluorescence quantum yield and the lifetime of the compounds in chloroform have been obtained. In sharp contrast with many oligothiophenes, it is observed that TCT possesses a high fluorescence quantum yield. On the other hand, the CN-containing derivatives exhibit much lower fluorescence quantum yields, probably due to the combined influence of steric effects and charge-transfer interactions caused by the cyano groups.  相似文献   

17.
香豆素衍生物的荧光发射能计算及XC泛函的合理选择   总被引:2,自引:0,他引:2  
王溢磊  吴国是 《物理化学学报》2007,23(12):1831-1838
采用含时密度泛函理论(TDDFT)与单激发组态相互作用(CIS)处理相结合的计算方案对香豆素系列15种已知荧光化合物的发射能进行了系统考察. 结果表明, 发射能与吸收能一样, 其计算值主要取决于交换-相关(XC)泛函的选择. 只要泛函选用得当, 在使用较小基组的TDDFT/6-31G(d)//CIS/3-21G(d)理论水平上即可使绝大部分化合物的实验发射能在精度达0.16 eV以内得以重现. 与吸收能计算不同的是, 无法选用单一的一种泛函来对全系列化合物的发射能作出满意的理论预测. 激发态无明显电荷转移的、7位上有氨(或胺)基取代或有氮原子相连的化合物, 其适用泛函为不含Hartree-Fock(HF)交换能的纯泛函OLYP和BLYP. 而激发态发生较大程度电荷转移的、3 位上有共轭取代基的衍生物, 其适用泛函则为含20%的HF交换成分的混合泛函B3LYP. 因此, 发射能计算中的XC泛函选择, 应同时考虑取代基团效应以及激发态的电子结构特征. 其中, 发射能计算值受XC泛函中HF交换能比例的影响十分敏感. 文中还对激发能计算中的溶剂效应校正方案和激发态几何优化精度的影响进行了讨论.  相似文献   

18.
Yilei Wang  Guoshi Wu   《Acta Physico》2007,23(12):1831-1838
A scheme of time-dependent density functional theory (TDDFT) combined with single-excitation configuration interaction (CIS) approach was employed to make a detailed investigation of the emitting energy for fifteen well-known coumarin derivatives. The results showed that the predicted emitting energies as well as the absorption ones were dominated mainly by the exchange-correlation (XC) functional to be used. So long as a functional is properly chosen, the experimental emitting energy of most derivatives can be accurately reproduced within 0.16 eV by a calculation at the TDDFT/6-31G(d)//CIS/3-21G(d) theoretical level. It was found that, nevertheless, the hybrid functional, B3LYP, well predicted the absorption energies for all the fifteen coumarin derivatives but none of the functionals could work equally well for the emitting energy calculations. Two pure functionals, OLYP and BLYP, yield good emitting energies for the 7-aminocoumarins or derivatives with a N atom connected to 7-position, which exhibit inconspicuous charge transfer (CT) in their excited states, whereas the B3LYP hybrid functional, with 20% Hartree-Fock (HF) exchange energy, performs significantly better than OLYP and BLYP for those 3-substituted coumarins with larger CT in excited states. Thus, in comparison with the absorption energies, the selection of proper functionals for the emitting energy calculations becomes more complex. In all probability, it is effective and doable to choose an XC-functional with alterable fraction of HF exchange energy according to the composition and structure characteristics of molecule.  相似文献   

19.
用密度泛函理论(DFT)的B3LYP/6-311G(d, p)和Müller-Plesset微扰理论的MP2/6-31G(d)方法,优化了AMT(2-氨基-5-巯基-1,3,4-噻二唑)各种异构体和过渡态结构的几何构型,并对它们的电子结构、振动光谱和化学键性质进行了研究.还研究了AMT异构体的互变机理,提出了AMT异构体abcda的循环式互变途径.进一步完成了对AMT异构体成键方式的自然键轨道(NBO)分析.  相似文献   

20.
Intramolecular charge-transfer (ICT) state formation of 4-(N,N-dimethylamino)benzonitrile in acetonitrile solution is studied by the reference interaction site model self-consistent field (RISM-SCF) method. Geometry optimizations are performed for each electronic state in solution with the complete-active-space SCF wave functions. Dynamic electron correlation effects are taken into account by using the multiconfigurational quasidegenerate perturbation theory. Two-dimensional free energy surfaces are constructed as the function of the twisting and wagging angles of the dimethylamino group for the ground and locally excited (LE) states. The calculated absorption and fluorescence energies are in good agreement with experiments. The validity of the twisted ICT (TICT) model is confirmed in explaining the dual fluorescence, and the possibility of the planar ICT model is ruled out. To examine the mechanism of the TICT state formation, a "crossing" seam between the LE and charge-transfer (CT) state surfaces is determined. The inversion of two electronic states occurs at a relatively small twisting angle. The effect of solvent reorganization is also examined. It is concluded that the intramolecular twisting coordinate is more important than the solvent fluctuation for the TICT state formation, because the energy difference between the two states is minimally dependent on the solvent configuration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号