首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Study on adsorption of thorium and uranium radionuclides by a soil sediment as a function of ionic composition of Ca, Mg and Na has been carried out. Experimentally determined slopes represents an average of adsorption on soil sediments having different relative affinities for thorium, uranium, calcium and magnesium. Both thorium and uranium were found to be adsorbed to ion-exchange sites together with calcium and magnesium cations as effective competitors An extrapolated equation for the distribution coefficientK d was formed for both radionuclides thorium and uranium at the specified site where the soil sediments were sampled. The combined cation concentration of both calcium and magnesium in solution correlates linearly with the measuredK d Th,U values.  相似文献   

2.
The paper describes a research of possible application of UTEVA and TRU resins and anion exchanger AMBERLITE CG-400 in nitrate form for the isolation of uranium and thorium from natural samples. The results of determination of distribution coefficient have shown that uranium and thorium bind on TRU and UTEVA resins from the solutions of nitric and hydrochloric acids, and binding strength increases proportionally to increase the concentration of acids. Uranium and thorium bind rather strongly to TRU resin from the nitric acid in concentration ranging from 0.5 to 5 mol L−1, while large quantities of other ions present in the sample do not influence on the binding strength. Due to the difference in binding strength in HCl and HNO3 respectively, uranium and thorium can be easily separated from each other on the columns filled with TRU resin. Furthermore, thorium binds to anion exchanger in nitrate form from alcohol solutions of nitric acid very strongly, while uranium does not, so they can be easily separated. Based on these results, we have created the procedures of preconcentration and separation of uranium and thorium from the soil, drinking water and seawater samples by using TRU and UTEVA resins and strong base anion exchangers in nitrate form. In one of the procedures, uranium and thorium bind directly from the samples of drinking water and seawater on the column filled with TRU resin from 0.5 mol L−1 HNO3 in a water sample. After binding, thorium is separated from uranium with 0.5 mol L−1 HCl, and uranium is eluted with deionised water. By applying the described procedure, it is possible to achieve the concentration factor of over 1000 for the column filled with 1 g of resin and splashed with 2 L of the sample. Spectrophotometric determination with Arsenazo III, with this concentration factor results in detection limits below 1 μg L−1 for uranium and thorium. In the second procedure, uranium and thorium are isolated from the soil samples with TRU resin, while they are separated from each other on the column filled with anion exchanger in alcohol solutions. Anion exchanger combined with alcohol solutions enables isolation of thorium from soil samples and its separation from a wide range of elements, as well as spectrophotometric determination, ICP-MS determination, and other determination techniques.  相似文献   

3.
The uptake of 238U and 232Th in different parts of some selected plants used in traditional treatment of hypertension and diabetes in south-eastern Morocco (Errachidia area) has been studied using two different types of solid state nuclear track detectors (SSNTDs) LR-115 type II and CR-39. Plant uptake of radionuclides is one of many vectors for introduction of contaminants into the human food chain. Thus, it is critical to understand soil–plant relationships that control nuclide bioavailability. Soil concentrations of uranium ranged from 6.10 to 11.62 ppm, with a mean of 7.90 ppm. Soil concentrations of thorium ranged from 2.70 to 4.80 ppm, with a mean of 3.41 ppm. Mean uranium specific activities were 8.38 Bq kg−1 in root tissue, 5 Bq kg−1 in stem tissue and 6.02 Bq kg−1 in leaf tissue. Mean thorium specific activities were 2.53 Bq kg−1 in root tissue, 1.64 Bq kg−1 in stem tissue and 1.96 Bq kg−1 in leaf tissue. The transfer factors of 238U and 232Th from soil to different parts (root, stem, leaf, seed and fruit) of studied plant samples have been investigated. The transfer factors obtained for root plants were markedly higher than those for leaf, stem, fruit and seed plants. Soil-to-plant transfer factor (TF) is one of the most important parameters to be used in transfer models for predicting the concentration of radionuclides in agricultural crops and for estimating dose impacts to man. This study of uranium and thorium uptake in plants used in traditional medicine is also significant as far as the health hazard effects of uranium and thorium in human being are concerned.  相似文献   

4.
Summary Minerals in the soil range from those that easily weather to those that are very resistant to the weathering processes. The minerals used in this study are referred to as “resistates” because of their resistance to natural weathering processes.1 It is also known that there are some resistate minerals that have a tendency to contain uranium and thorium within their crystal structure. These resistates can contain as much as 15-20% of the total uranium and thorium present in the soil.9 Do resistates dissolve in acids, particularly in the HF/HNO3 procedures, if not what can be done to the HF/HNO3 process to dissolve more of the resistate minerals? How would these acid techniques compare to the fusion method used for mineral dissolution? Could the resistate minerals contain considerable amount of uranium and thorium? These were the questions addressed in this research. The comparative data indicate that the use of H2SO4 in the dissolution process resulted in ~25% overall increase in the minerals dissolving therefore resulting in a higher yield of extracted uranium and thorium.  相似文献   

5.
A simple method is described for the determination of uranium and thorium in gological materials. The samples are irradiated in a reactor with resonance and fast neutrons behind a cadmium filter. Compared with an irradiation with the whole reactor neutron spectrum, the matrix activities are reduced to about 1%, those of uranium (239Np) and thorium (233Pa) to about only 50 and 25%, respectively. This relative diminution of matrix activities allows the γ-measurement of239Np and233Pa as early as after two days' cooling time; in samples with high uranium contents the determination of233Pa requires one month's cooling time. This non-destructive procedure yields a detection limit of 0.1 ppm for uranium and thorium in samples of 200 mg, with an error of ±5%. Dedicated to ProfessorW. Borchert on the occasion of his 60th birthday.  相似文献   

6.
The solvent extraction behavior of thorium traces from the hydrochloric acid media with 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone (PMBP) is described using 234Th as a tracer. The influence of certain variables such as extractant concentration, acidity, equilibrium time as well as UO2 2+ ions on the extraction of thorium has been investigated systematically. The back-extraction behavior of thorium from the organic phase has also been tested. The results reveal that the percent extraction of 234Th decreases with increasing hydrochloric acid concentration and thorium is easily back-extracted with an 4-6 mol/l aqueous HCl solution. At the same time, the effect of thorium extraction with PMBP was tested employing radioisotopes as multi-tracers in the irradiation of natural uranium with 14-15 MeV neutrons. The results show that thorium can be completely separated from a large amount of uranium and most of the other main reaction products.  相似文献   

7.
The search for neutrinoless double beta decay in 76Ge has driven the need for ultra-low background Ge detectors shielded by electroformed copper of ultra-high radiopurity (<0.1 μBq/kg). Although electrodeposition processes are almost sophisticated enough to produce copper of this purity, to date there are no methods sensitive enough to assay it. Inductively coupled plasma mass spectrometry (ICP/MS) can detect thorium and uranium at femtogram levels, however, this assay is hindered by high copper concentrations in the sample. Electrodeposition of copper samples removes copper from the solution while selectively concentrating thorium and uranium contaminants to be assayed by ICP/MS. Spiking 232Th and 238U into the plating bath simulates low purity copper and allows for the calculation of the electrochemical rejection rate of thorium and uranium in the electroplating system. This rejection value will help to model plating bath chemistry.  相似文献   

8.
This paper describes an evaluation of activation analysis by delayed neutron counting to determine uranium and thorium simultaneously in geological materials and to measure235U/238U isotopic ratios. A procedure to isolate the thorium before the irradiation was studied and adapted for use when the interference of uranium makes the nondestructive thorium analysis impossible.235U/238U ratios were determined in standards with235U abundances from about 0.5 to 93%, in milligram size samples. Discussion on precision, accuracy and total error of the method is presented.From a thesis submitted by M. J. A. ARMELIN to the University of São Paulo in partial fulfillment of the requirements for a Doctor of Science Degree in Nuclear Technology.  相似文献   

9.
A simple and effective method is presented for the separation and preconcentration of thorium(IV) and uranium(VI) by solid phase extraction on Duolite XAD761 adsorption resin. Thorium(IV) and uranium(VI) 9-phenyl-3-fluorone chelates are formed and adsorbed onto the Duolite XAD761. Thorium(IV) and uranium(VI) are quantitatively eluted with 2 mol L−1 HCl and determined by inductively coupled plasma-mass spectrometry (ICP-MS). The influences of analytical parameters including pH, amount of reagents, amount of Duolite XAD761 and sample volume, etc. were investigated on the recovery of analyte ions. The interference of a large number of anions and cations has been studied and the optimized conditions developed have been utilized for the trace determination of uranium and thorium. A preconcentration factor of 30 for uranium and thorium was achieved. The relative standard deviation (N = 10) was 2.3% for uranium and 4.5% for thorium ions for 10 replicate determinations in the solution containing 0.5 μg of uranium and thorium. The three sigma detection limits (N = 15) for thorium(IV) and uranium(VI) ions were found to be 4.5 and 6.3 ng L−1, respectively. The developed solid phase extraction method was successively utilized for the determination of traces thorium(IV) and uranium(VI) in environmental samples by ICP-MS.  相似文献   

10.
A radiochemical procedure for the determination of alpha-emitting isotopes of uranium and thorium in vegetables and excreta has been optimized, involving sample dissolution, separation by ionic exchange resin, electrodeposition and alpha-spectroscopy. Uranium and thorium isotopes were determined separately to prevent interference of 228Th from 232U tracer with 228Th from natural series of 232Th. This procedure was applied to faeces from people living in the Poços de Caldas plateau, a high natural radioactivity region of Brazil, and vegetables from the Laboratory of Environmental Monitoring (EML/DOE). Results show a chemical recovery of 80–95% for uranium and 46–72% for thorium.  相似文献   

11.
Thorium along with its daughter products present in the soil is one of the major contributors to the external gamma dose in the environment. To establish the dose levels, quantification of thorium contents in soil samples is very important. As a part of pre-operational environmental radiological surveillance, a total of 23 soil and six sand samples were collected from different locations around the proposed nuclear power plant site of Jaitapur, Maharashtra. Thorium concentrations in these samples were determined by instrumental neutron activation analysis (INAA). Samples were irradiated with neutrons in Apsara reactor at a neutron flux of?~5?×?1011 cm?2 s?1 and radioactive assay was carried out using high resolution gamma ray spectrometry. Relative method of INAA was used for quantification of thorium utilizing 311.9?keV gamma ray of 233Pa, the daughter product of 233Th. The concentrations of thorium in the soil and sand samples were in the ranges of 4.0?C18.8 and 1.2?C6.2?mg?kg?1 respectively.  相似文献   

12.
Adsorption studies of thorium and uranium radionuclides on 9 different pure clay minerals and 4 local Malaysian soil sediments were conducted. Solution containing dissolved thorium and uranium at pH 4.90 was prepared from concentrate sludges from a long term storage facility at a local mineral processing plant. The sludges are considered as low level radioactive wastes. The results indicated that the 9 clay minerals adsorbed more uranium than thorium at pH ranges from 3.74 to 5.74. Two local Malaysian soils were observed to adsorb relatively high concentration of both radionuclides at pH 3.79 to 3.91. The adsorption value 23.27 to 27.04 ppm for uranium and 33.1 to 50.18 ppm for thorium indicated that both soil sediments can be considered as potential enhanced barrier material for sites disposing conditioned wastes containing uranium and thorium.  相似文献   

13.
A method is developed for the selective leaching of 233U from a thorium oxalate cake. The leaching capacity of ammonium carbonate and nitric acid have been investigated, showing that (NH4)2CO3 leads to higher recovery. The maximum leaching efficiency is obtained using 0.5% ammonium carbonate, with a minimal thorium pick-up. A uranium recovery of 94% is obtained after three consecutive contact experiments in carbonate media, with minimal thorium uptake in the leachate. This process was applied to an actual plant stream, allowing the reduction of the 233U -activity from 5.64 to 0.3 Ci/g of thorium oxalate cake.  相似文献   

14.
A case study was carried out to determine the uptake of thorium from soil to plant by using X-ray fluorescence technique. The radioecological experiment was undertaken to provide plant/soil concentration ratio (CR) data for thorium using 2 types of plant (barley and common vetch)×4 levels of Th(0, 1500, 3000,4500ppm)×2 types of soil (acidic and alkaline) with different configuration parameters. The calibration of the analytical method for thorium on dry basis of samples is described by using109Cd excitation source. The results indicated that theCR values decreased with the corresponding Th concentration in soils with a 1000 fold range and differed among soil and plant types.  相似文献   

15.
Radiological chronometry is an important tool in nuclear forensics that uses several methods to determine the length of time that has elapsed since a material was last purified. One of the chronometers used in determining the age of metallic uranium involves measuring the fractional ingrowth of 230Th from its parent 234U with the assumption that the uranium metal contained no impurities, especially thorium, when it was purified. The affects of different etching procedures were evaluated for the removal of surface oxidation with three different types of uranium metal samples to determine whether the etching procedure affects the radiological age. The sample treated with a rigorous etching procedure had exhibited the most reliable radiological age while less rigorous etching yields a radiological age from 15 years to hundreds of years older than the known age. Any excess thorium on the surface of a uranium metal sample presents a bias in age determination and the sample will appear older than the true age. Although this research demonstrates the need for rigorous surface etching, a bias in the radiological age could have arisen if the uranium in the metal was heterogeneously distributed.  相似文献   

16.
The paper describes a methodology for a reference material preparation to be used for the determination of the production date (i.e. the time elapsed since the last chemical processing) of uranium materials based on the 230Th/234U radiochronometer. The reference material was prepared from highly enriched uranium by a complete separation of thorium decay products, thus zeroing the initial daughter nuclide concentration at known time. The complete elimination of thorium from the starting material was verified by gamma spectrometric measurements and by addition of a 232Th tracer to the material and its re-measurement in the final product after the separation. The validation of the methodology was carried out subsequently by comparing the ingrown daughter nuclide 230Th and the measured 230Th/234U ratio after recorded times following the last chemical separation with the calculated values obtained on the basis of their respective half-lives. The prepared reference material can be used as a quality control material for age determination of uranium in nuclear forensics and safeguards as well as for method validation.  相似文献   

17.
Highly sensitive neutron activation analysis of uranium and thorium in high quality silica and aluminium has been investigated using the Japan Materials Testing Reactor (JMTR), having a thermal neutron flux higher than 1014 n/cm2/s. In order to determine ultra-low contents of uranium and thorium,239Np and233Pa as activation products were separated by using anion exchange and LaF3 coprecipitation methods. As a result, a number of interfering radioactive isotopes containing double neutron capture product such as183Ta were removed completely from the isolated239Np and233Pa fraction and the detection limits for uranium and thorium were found to be 2·10–12 g and 4·10–13 g, respectively.  相似文献   

18.
The separation of uranium and thorium from matrices containing various metal ions, was studied. The mobile phase contains isopropyldithiophosphoric acid (i-PrDTP), as a complexing agent, in order to differentiate the studied species by modifying their retention. The paper reports the successful separation and the quantitative determination of uranium and thorium in the presence of Ni2+, Co2+ and Ag+ in the concentration range 2.5–2.5 μg/μl for uranium and 2.5–30 μg/μl for thorium.  相似文献   

19.
Adsorption of uranium, as UO2 2+, and thorium, as Th4+, has been studied using a modified fly ash bed. Effects of pH and various ions like La3+, Fe3+, Ce4+, SiO3 2- etc., have been examined. Synthetic mixtures of UO2 2+ and Th4+ in different concentrations were passed through the bed and eluted separately with various selective reagents viz. ammonium carbonate, sodium carbonate and acetic acid-sodium hydroxide buffer. Separations of these elements at ppm level are shown to be very effective. The separation of uranium and thorium in the presence of lanthanides in monazite sand has been studied successfully. In the analysis of monazite sand, the oxalate precipitation has been avoided. The method is simple and of very low cost. The modified fly ash bed can also be used to remove uranium from contaminated water.  相似文献   

20.
A procedure was developed for determining trace amounts of uranium and thorium isotopes in bottom sediments from Lake Baikal. This procedure involves sample decomposition, the coextraction of uranium and thorium with trioctylphosphine oxide, the quantitative back extraction after diluting the extract with caprylic acid, and the ICP MS analysis of the back extract. The procedure was verified by analyzing a BIL-1 Lake Baikal bottom silt standard reference material using the developed procedure and independent methods. The detection limits of abundant uranium and thorium isotopes are restricted by blank measures and equal to 1 × 10–7 mass %. The detection limits for234U and 230Th are 4 × 10–10 and 6 × 10–10 mass %, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号