首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
3-(Dimethylamino)-2,2-dimethyl-2H,-azirine as an α-Aminoisobutyric-Acid (Aib) Equivalent: Cyclic Depsipeptides via Direct Amid Cyclization In MeCN at room temperature, 3-(dimethylamino)-2,2-dimethyl-2H-azirine ( 1 ) and α-hydroxycarboxylic acids react to give diamides of type 8 (Scheme 3). Selective cleavage of the terminal N,N-dimethylcarboxamide group in MeCN/H2O leads to the corresponding carboxylic acids 13 (Scheme 4). In toluene/Ph SH , phenyl thioesters of type 11 are formed (see also Scheme 5). Starting with diamides 8 , the formation of morpholin-2,5- diones 10 has been achieved either by direct amide cyclization via intermediate 1,3-oxazol-5(4H)-ones 9 or via base-catalyzed cyclization of the phenyl thioesters 11 (Scheme 3). Reaction of carboxylic acids with 1 , followed by selective amide hydrolysis, has been used for the construction of peptides from α-hydroxy carboxylic acids and repetitive α-aminoisobutyric-acid (Aib) units (Scheme 4). Cyclization of 14a, 17a , and 20a with HCI in toluene at 100° gave the 9-, 12-, and 15-membered cyclic depsipeptides 15, 18 , and 21 , respectively.  相似文献   

2.
Novel, more reliable and general reaction conditions for the α-alkylation of 4-monosubstituted 2-phenyloxazol-5(4H)-ones ( = 4-monosubstituted 2-phenyl-azlactones) rac- 2 to 4,4-disubstituted 2-phenyloxazol-5(4H)-ones rac- 1 were found (Scheme 2). Thus, a whole range of highly functionalized rac- 1 were prepared in medium-to-good overall yields (40-90%, see Table). Azlactones rac- 1 are ideal precursors for the synthesis of optically pure α,α -disubstituted (R)- and (S)-α-amino acids.  相似文献   

3.
From a Base Catalyzed Ring Opening of 2H-Azirines to an α-Alkylation Method of Primary Amines It is shown that fluorene-9′-spiro-2-(3-phenyl-2H-azirine) ( 1 ) on treatment with various alcohols in the presence of the corresponding alkoxide ions yields N-(9′-fluorenyl)benzimidates 2a-d (Scheme 1). 2,2,3-Triphenyl-2H-azirine ( 3 ) reacts with methanol in a similar manner (Scheme 2). Benzimidates 2a (Scheme 3), 8 (Scheme 4) and and 10 (Scheme 5) can easily be deprotonated by butyllithium (BuLi) or lithium diisopropylamide (LDA) in tetrahydrofuran (THF) to 1-methoxy-2-aza-allylanions, that can be alkylated, at C(3), exclusively, by various electrophiles (e.g. R-X(X = I, Br), RCHO or methyl acrylate (see also Scheme 6)). As the acidic hydrolyses (1N HCl) of benzimidates 9 and 11 leads to the corresponding α-alkylated free amines 15 and 18 (Scheme 7 and 8), benzoyl derivatives 16 and 19 are obtained from the hydrolysis under basic conditions. On the other hand, it is observed that a catalyzed Chapman rearrangement of 9 and 11 results in the formation of N-benzoyl-N-methyl derivatives 17 and 20 (Scheme 7 and 8). The described reactions offer a simple method for the α-alkylation of activated primary amines.  相似文献   

4.
On triplet excitation (E)- 2 isomerizes to (Z)- 2 and reacts by cleavage of the C(γ), O-bond to isomeric δ-ketoester compounds ( 3 and 4 ) and 2,5-dihydrofuran compounds ( 5 and 19 , s. Scheme 1). - On singulet excitation (E)- 2 gives mainly isomers formed by cleavage of the C(γ), C(δ)-bond ( 6–14 , s. Scheme 1). However, the products 3–5 of the triplet induced cleavage of the C(γ), O-bond are obtained in small amounts, too. The conversion of (E)- 2 to an intermediate ketonium-ylide b (s. Scheme 5) is proven by the isolation of its cyclization product 13 and of the acetals 16 and 17 , the products of solvent addition to b . - Excitation (λ = 254 nm) of the enol ether (E/Z)- 6 yields the isomeric α, β-unsaturated ε-ketoesters (E/Z)- 8 and 9 , which undergo photodeconjugation to give the isomeric γ, δ-unsaturated ε-ketoesters (E/Z)- 10 . - On treatment with BF3O(C2H5)2 (E)- 2 isomerizes by cleavage of the C(δ), O-bond to the γ-ketoester (E)- 20 (s. Scheme 2). Conversion of (Z)- 2 with FeCl3 gives the isomeric furan compound 21 exclusively.  相似文献   

5.
Optically Active 3-Amino-2H-azirines as Synthons for Enantiomerically Pure αα-Disubstituted α-Amino Acids: Synthesis of the α-Methylphenylalanine Synthons and Some Model Peptides The synthesis of a novel 2-benzyl-2-methyl-3-amino-2H-azirine derivative with a chiral amino group is described. Chromatographic separation of the diastereoisomer mixture yielded the pure diastereoisomers 9a and 9b (Scheme 4) which are the D - and L -2-methylphenylalanine ((α-Me)Phe) synthons, respectively. The reaction of 9a and 9b with thiobenzoic acid and with Z-leucine yielded the monothiodiamides 10a and 10b (Scheme 5) and the dipeptide derivatives 11a and 11b (Scheme 6), respectively. Methanolysis of 11b yielded 12b . The absolute configuration of 10a was established by X-ray crystallography. The absolute configuration of (α-Me)Phe in 12b has been deduced from the known configuration of L -leucine.  相似文献   

6.
Synthesis of 3-(2-Carboxy-4-pyridyl)-and 3-(6-Carboxy-3-pyridyl)-DL-alanine As starting materials for potential photochemical approaches to betalaines C(R = COOH) and to muscaflavine F(R = COOH), β-(2-carboxy-4-pyridyl)- and β-(6(carboxy-3-pyridyl))-DL-alanine ( A and D with R = COOH or 4 and 11 ), respectively, were prepared (Scheme 1). The synthesis of 4 (= A, R = COOH) started with the 2-[(4-pyridyl)methyl]malonate 1 and proceeded via the N-oxide 2 , cyanation and hydrolysis (Scheme 2). Amino acid 11 was obtained from (3-pyridyl)methyl-bromide ( 6 ) via the malonate 7 by an analogous sequence of reactions (Scheme 3).  相似文献   

7.
The Stereoselectivity of the α-Alkylation of (+)-(1R, 2S)-cis-Ethyl-2-hydroxy-cyclohexanecarboxylate In continuation of our work on the stereoselectivity of the α-alkylation of β-hydroxyesters [1] [2], we studied this reaction with the title compound (+)- 2 . The latter was prepared through reduction of 1 with baker's yeast. Alkylation of the dianion of (+)- 2 furnished (?)- 4 in 72% chemical yield (Scheme 1) and with a stereoselectivity of 95%. Analogously, (?)- 7 was prepared with similar yields. Oxidation of (?)- 4 and (?)- 7 respectively furnished the ketones (?)- 6 (Scheme 3) and (?)- 8 (Scheme 4) respectively, each with about 76% enantiomeric excess (NMR.). It is noteworthy that yeast reduction of rac- 6 (Scheme 3) is completely enantioselective with respect to substrate and product and gives optically pure (?)- 4 in 10% yield, which was converted into optically pure (?)- 6 (Scheme 3). The alkylation of the dianionic intermediate shows a higher stereoselectivity (95%) from the pseudoequatorial side than that of 1-acetyl- or 1-cyano-4-t-butyl-cyclohexane (71% and 85%) [9] or that of ethyl 2-methyl-cyclohexanecarboxylate (82%). The stereochemical outcome of the above alkylation is comparable with that found in open chain examples [1] [2]. Finally (+)-(1R, 2S)- 2 was also alkylated with Wichterle's reagent to give (?)-(1S, 2S)- 9 in 64% yield. The latter was transformed into (?)-(S)- 10 and further into (?)-(S)- 11 (Scheme 5). (?)-(S)- 10 and (?)-(S)- 11 showed an e.e. of 76–78% (see also [11]). Comparison of these results with those in [11] confirmed our former stereochemical assignment concerning the alkylation step.  相似文献   

8.
Peptide-Bond Formation with C-Terminal α,α-Disubstituted α - Amino Acids via Intermediate Oxazol-5(4H)-ones The formation of peptide bonds between dipeptides 4 containing a C-terminalα,α-disubstituted α-amino acid and ethyl p-aminobenzoate ( 5 ) using DCC as coupling reagent proceeds via 4,4-disubstituted oxazol-5(4H)-ones 7 as intermediates (Scheme 3). The reaction yielding tripeptides 6 (Table 2) is catalyzed efficiently by camphor-10-sulfonic acid (Table 1). The main problem of this coupling reaction is the epimerization of the nonterminal amino acid in 4 via a mechanism shown in Scheme 1. CSA catalysis at 0° suppresses completely this troublesome side reaction. For the coupling of Z-Val-Aib-OH ( 11 ) and Fmoc-Pro-Aib-OH ( 14 ) with H-Gly-OBu1 ( 12 ) and H-Ala-Aib-NMe2 ( 15 ), respectively, the best results have been obtained using DCC in the presence of ZnCl2 (Table 3).  相似文献   

9.
Cob(I)alamin as Catalyst. 5. Communication [1]. Enantioselective Reduction of α,β-Unsaturated Carbonyl Derivatives The cob(I)alamin-catalyzed reduction of an α,β-unsaturated ethyl ester in aqueous acetic acid produced the (S)-configurated saturated derivative 2 with an enantiomeric excess of 21%. The starting material 1 is not reduced at pH = 7.0 in the presence of catalytic amounts of cob(I)alamin (see Scheme 2). It is shown that the attack of cob(I)alamin and not of cob(II)alamin, also present in Zn/CH3COOH/H2O, accounts for the enantioselective reduction observed. All the (Z)-configurated starting materials 1 , 3 , 5 , 7 , 9 and 11 have been transformed to the corresponding (S)-configurated saturated derivatives 2 , 4 , 6 , 8 , 10 and 12 , respectively. The highest enantiomeric excess revealed to be present in the saturated product 12 (32,7%, S) derived from the (Z)-configurated methyl ketone 11 (see Scheme 3 and Table 1). The reduction of the (E)-configurated starting materials led mainly to racemic products. A saturated product having the (R)-configuration with a rather weak enantiomeric excess (5.9%) has been obtained starting from the (E)-configurated methyl ketone 23 (see Scheme 5 and Table 2). The allylic alcohols 16 and 24 have been reduced to the saturated racemic derivative 17 .  相似文献   

10.
About the Stereospecific α-Alkylation of β-Hydroxyesters It was found, that dianions derived from β-hydroxyesters with lithium diisopropylamide (LDA) at ?50 to ?20° were alkylated stereospecifically (Scheme 1). The stereospecificity was 95–98%, the threo-compound (threo -2, -3 and -4) being the main product. This was proved for threo -2 and -3 by preparing the β-lactones 7 and 8 , respectively, which were pyrolyzed to trans-1, 4-hexadiene (9) and trans-1-phenyl-2-butene (10) , respectively (Scheme 2). Moreover, the acid threo -6 from threo -3 was converted by dimethylformamide-dimethylacetal to cis-1-phenyl-2-butene (11) (s. footnote 6). The alkylation of α-monosubstituted β-hydroxyesters also turned out to be stereospecific. Reduction of 16 and 18 with actively fermenting yeast furnished (+) -17 and (+) -2. respectively (Scheme 4), which were each mixtures of the (2R, 3S)- and the (2S, 3S)-isomers. Alkylation of (+) -17 with allyl bromide yielded after chromatography (2S, 3S) -19 and of (+) -2 with methyl iodide (2R, 3S) -19 , the oxidation of which finally gave (S)-(?) -20 and (R)-(+) -20 , respectively.  相似文献   

11.
Photochemistry of tricyclic β, γ-γ′, δ′-unsaturated ketones The easily available tricyclic ketone 1 (cf. Scheme 1) with a homotwistane skeleton yielded upon direct irradiation the cyclobutanone derivative 3 by a 1,3-acyl shift. Further irradiation converted 3 into the tricyclic hydrocarbon 4 . However, acetone sensitized irradiation of 1 gave the tetracyclic ketone 5 by an oxa-di-π-methane rearrangement. Again with acetone as a sensitizer the ketone 5 was quantitatively converted to the pentacyclic ketone 6 . The conversion 5 → 6 represents a novel photochemical 1,4-acyl shift. The possible mechanisms are discussed (see Scheme 7). The tricyclic ketone 2 underwent similar types of photoreactions as 1 (Scheme 2). Unlike 5 the tetracyclic ketone 9 did not undergo a photochemical 1,4-acyl shift. The epoxides 10 and 14 derived from the ketones 1 and 2 , respectively, underwent a 1,3-acyl shift upon irradiation followed by decarbonylation, and the oxa-di-π-methane rearrangement (Schemes 3 and 4). The diketone 18 derived from 1 behaved in the same way (Scheme 5). The tetracyclic diketone 21 cyclized very easily to the internal aldol product 22 under the influence of traces of base (Scheme 5). Upon irradiation the γ, δ-unsaturated ketone 24 underwent only the Norrish type I cleavage to yield the aldehyde 25 (Scheme 6).  相似文献   

12.
Partial Synthesis of Quassin: Synthesis of a Key Intermediate with an Angular 8β-Methyl Group from Testosterone A key intermediate in the partial synthesis of quassin ( 1 ) was synthesized in 28 steps starting from testosterone ( 9 ) (Scheme 3). The key features are: (i) The conversion of testosterone ( 9 ) into the 1α, 2β, 3β-O-substituted 4α-methylandrostane 19 (Scheme 3) and its transformation into an intermediate 26 with the ring A partial structure of quassin (Scheme 4). (ii) The conversion of 19 to the vinylogous α-hydroxyketone 5 (Scheme 6 and 7). (iii) The photochemically induced [2+2]-cycloaddition of allene to hydroxyenone 5 , affording the 8β, 14β-cyclobutano-derivative 6 (Scheme 2 and 8). (iv) The conversion of 6 into the key compound 7 . In connection with this last transformation a new method for the degradation of phenylselenoesters of carboxylic acids to the corresponding nor-alkanes was developed (see Scheme 8). Details of this reaction will be published elsewhere [18].  相似文献   

13.
A wide range of cyclic and open-chain α,α-disubstituted α-amino acids 1a-p were prepared. The racemic N-acylated α,α-disubstituted amino acids were resolved by coupling to chiral amines 15-18 derived from (S)-phenylalanine to form diastereoisomers 19/20 or 21/22 that could be separated by crystallization and/or flash chromatography on silica gel (Scheme 3). Selective cleavage via the 1,3-oxazol-5(4H)-ones 10a-p gave the corresponding optically pure α,α-disubstituted amino-acid derivatives 11 or 12 in high yield (Scheme 3). The absolute configurations of the α,α-disubstituted amino acids were determined from X-ray structures of the diastereoisomers 20, 21g′, 22d .  相似文献   

14.
Claisen Rearrangement of 2-Propinyl (3-Pyridyl) and Allyl (3-Pyridyl) Ethers
  • 1 Verbindungen vom Typ 1 werden mit Ausnahme von 17 und 25 als Äther benannt. Der systematische Name von 1 ist: 3-(2-Propinyl)oxy-pyridin.
  • 2-Propinyl (3-pyridyl) ether ( 1 ), synthesized from the corresponding 3-pyridinol, was heated in DMF or decane at 208° in a sealed tube. In this way the furopyridines 2 and 3 were formed, and furthermore the pyranopyridine 4 if decane was used as solvent (Scheme 1). The same reactions took place with (2-methyl-3-pyridyl) 2-propinyl ether ( 14 ). In DMF only 15 , and in decane 16 as well as 15 were formed (Scheme 3). The rearrangement of the pyridine derivative 17 , which is substituted in both O-positions to the ether moiety, gave in both DMF and decane the diastereoisomeric tetracyclic compounds 18 and 19 . The same kind of reaction took place with 25 (Scheme 4). In the thermolysis of the allyl 3-pyridyl ether ( 27 ) cyclization was observed, too. The isolated product has the structure of the dihydrofuropyridine 28 (Scheme 6). The substituted allyl 3-pyridyl ether 30 reacted in the same way to the dihydrofuropyridine 31 (Scheme 6).  相似文献   

    15.
    Methionine as Precursor for the Enantioselective Synthesis of α-Branched Vinylglycines and of Other Amino Acids Methionine is converted by previously published methods into the diastereoisomerically pure 3-thiabutyl-substituted oxazolidinone ( 7 ) and imidazolidinones 5 and 6 . An X-ray crystal structure determination of cis-3-benzoyl-2-(tert-butyl)-4-(3-thiabutyl)oxazolidin-5-one ( 7 ) confirms the configurational assignments made by NOE-NMR measurements. Oxidation to sulfoxides and pyrolytic elimination produce vinyl-substituted heterocycles (see 19, 21 ). Diastereoselective alkylations of the enolate 14 from the imidazolidinone 5 and of the dienolate 23 from the vinyl derivative 19 give geminally alkyl- and/or vinyl-substituted heterocycles. Some of these products were hydrolyzed to free amino acids, such as (R)-2-methyl- ( 25a ) and (R)-2-ethyl-2-vinylglycine ( 25b ) (R)-2-methylhomoserine ( 27 ). Raney-Ni desulfurization of 5 and oxidative degradation of 19 lead to enantiomerically pure derivatives of α-aminobutyric acid (see 28 ) and of glycine (see 31 ), respectively.  相似文献   

    16.
    Formal Total Synthesis of (±)-Isocomen by Application of the α-Alkinon Cyclization A total synthesis of the racemic form of the sesquiterpene isocomene ( A ) was accomplished by application of the cyclopentenone anellation B→D (Scheme 1) which includes the α-alkynone cyclization C→D , a gas-phase flow thermolytic process. Starting with the known product 2 (Scheme 3) of the anellation B→D , the elaboration of ring C of A proceeded in 9 steps to the α-alkynone 16 (Scheme 5) which was cyclized at 540° selectively to give the angularly fused triquinane 4 (77%). A two-step procedure then led to 5 (Scheme 6), a last but one intermediate in a known total synthesis of (±)- A . The conversion of 16 to 4 also demonstrated the compatibility of an acetoxy function with the anellation sequence B→D .  相似文献   

    17.
    Chiral enolates of imidazolidinones and oxazolidinones from the title amino acids react with carbonyl compounds to afford the corresponding alcohols in excellent yields (see Scheme 5). Furthermore, the addition to aldehydes proceeds with high diastereoselectivity to give, after acid hydrolysis, threo-α-amino-β-hydroxy acids of high enantiomeric purity. Some of the threo-α-amino-β-hydroxy acids prepared in this work are the proteinogenic (S)-threonine ( 26 ), the naturally occurring (S)-3-phenylserine ( 28 ), and (S)-3-hydroxyleucine ( 27 ) as well as the unnatural (S)-4,4,4-trifluorothreonine ( 30 ) and (S)-3-(4-pyridyl)serine ( 31 ). The N-methylamide of (2S,3R,4R,6E)-3-hydroxy-4-methyl-2-(methylamino)-6-octenoic acid ( 32 ), the unique amino acid in the immunosuppressive cyclosporine, was prepared by the new method. This report presents also information suggesting that both steric and stereoelectronic effects are responsible for the good stereoselectivities observed.  相似文献   

    18.
    Nucleobase-anion glycosylation (KOH, tris[2-(2-methoxyethoxy)ethyl]amine (TDA-1), MeCN) of the pyrrolo[2,3-d]pyrimidines 4a – d with 5-O-[(1,1-dimethylethyl)dimethylsilyl]-2,3-O-(1-methylethylidene)-α-D -ribo-furanosyl chloride ( 5 ) gave the protected β-D -nucleosides 6a – d stereoselectively (Scheme 1). Contrary, the β-D -halogenose 8 yielded the corresponding α-D -nucleosides ( 9a and 9b ) apart from minor amounts of the β-D -anomers. The deprotected nucleosides 10a and 11a were converted into 4-substituted 2-aminopyrrolo[2,3-d]-pyrimidine β-D -ribofuranosides 1 . 10c , 12 , 14 , and 16 and into their α-D -anomers, respectively (Scheme 2). From the reaction of 4b with 5 , the glycosylation product 7 was isolated, containing two nucleobase moieties.  相似文献   

    19.
    First ever non-deformylating transdiazotization of acylacetaldehydes was achieved: the reactions of 2-azido-l-ethylpyridinium tetrafluoroborate ( 4 ) with acylacetaldehydes 3 proceeded partially without deformylation to yield 16 new α-diazo-β-oxoaldehydes 1 along with diazomethyl ketones 2 , especially in the presence of NaOAc (Scheme 1, Tables 1 and 2). The product distribution was substituent-dependent and could be correlated quantitatively. This new diazotization reaction appears as an alternative, direct, and more general method for the synthesis of these diazooxoaldehydes. α-Oxocycloalkanecarbaldehydes 5 gave only traces (if any) of α-diazocycloalkanones 7 , and rearrangement products 6 were isolated (Scheme 2). Mechanisms of the reactions are discussed (Schemes 4 and 5).  相似文献   

    20.
    3-(Dimethylamino)-2,2-dimethyl-2H-azirine as an Aib Equivalent; Synthesis of Aib Oligopeptides 3-(Dimethylamino)-2,2-dimethyl-2H-azirine ( 1 ) reacts with carboxylic acids at 0–25° to give 2-acylamino-N,N,2-trimethylpropionamides ( = 2-acylamino-N,N-dimethylisobutyramide, acyl-Aib-NMe2) in excellent yields (Scheme 2 and 3). Examples of α-amino-, α-hydroxy-, and α-mercapto-carboxylic acids are given. On treatment with HCl in toluene, the terminal dimethylamide group is selectively converted to the corresponding carboxylic acid (→acyl-Aib) via an amide cleavage (Scheme 4 and 5); 1,3-oxazol-5(4H)-ones are intermediates of this amide hydrolysis. This reaction sequence has been used for the extension of peptide chains (Scheme 6). The synthesis of Aib-oligopeptides using this methodology is described (Scheme 8).  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号