首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The acid-catalyzed rearrangement of N-(1′,1′-dimethylprop-2′-ynyl)-, N-(1′-methylprop-2′-ynyl)-, and N-(1′-arylprop-2′-ynyl)-2,6-, 2,4,6-, 2,3,5,6-, and 2,3,4,5,6-substituted anilines in mixtures of 1N aqueous H2SO4 and ROH such as EtOH, PrOH, BuOH etc., or in CDCl3 or CCl4 in the presence of 4 to 9 mol-equiv. trifluoroacetic acid (TFA)has been investigated (cf. Scheme 12-25 and Tables 6 and 7). The rearrangement of N-(3′-X-1′,1′-dimethyl-prop-2′-ynyl)-2,6- and 2,4,6-trimethylanilines (X = Cl, Br, I) in CDCl3/TFA occurs already at 20° with τ1/2 of ca. 1 to 5 h to yield the corresponding 6-(1-X-3′-methylbuta-1,2′-dienyl)-2,6-dimethyl- or 2,4,6-trimethylcyclohexa-2,4-dien-1-iminium ions (cf. Scheme 13 and Footnotes 26 and 34) When the 4 position is not substituted, a consecutive [3,3]-sigmatropic rearrangement takes place to yield 2,6-dimethyl-4-(3′-X-1′,1′-dimethylprop-2′-ynyl)anilines (cf. Footnotes 26 and 34). A comparable behavior is exhibited by N-(3′-chloro-1′-phenylprop-2′-ynyl)-2,6-dimethylaniline ( 45 ., cf. Table 7). The acid-catalyzed rearrangement of the anilines with a Cl substituent at C(3′) in 1N aqueous H2SO4/ROH at 85-95°, in addition, leads to the formation of 7-chlorotricyclo[3.2.1.02,7]oct-3-en-8-ones as the result of an intramolecular Diels-Alder reaction of the primarily formed iminium ions followed by hydrolysis of the iminium function (or vice versa; cf. Schemes 13,23, and 25 as well as Table 7). When there is no X substituent at C(1′) of the iminium-ion intermediate, a [1,2]-sigmatropic shift of the allenyl moiety at C(6) occurs in competition to the [3,3]-sigmatropic rearrangement to yield the corresponding 3-allenyl-substituted anilines (cf. Schemes 12,14–18, and 20 as well as Tables 6 and 7). The rearrangement of (?)?(S)-N-(1′-phenylprop-2′-ynyl)-2,6-dimethylaniline ((?)- 38 ; cf. Table 7) in a mixture of 1N H2SO4/PrOH at 86° leads to the formation of (?)-(R)-3-(3′-phenylpropa-1′,2′-dienyl)-2,6-dimethylaniline ((?)- 91 ), (+)-(E)- and (?)-(Z)-6-benzylidene-1,5-dimethyltricyclo[3.2.1.02′7]oct-3-en-8-one ((+)-(E)- and (?)-(Z)- 92 , respectively), and (?)-(S)-2,6-dimethyl-4-( 1′-phenylprop-2′-ynyl)aniline((?)- 93 ). Recovered starting material (10%) showed a loss of 18% of its original optical purity. On the other hand, (+)-(E)- and (?)-(Z)- 92 showed the same optical purity as (minus;)- 38 , as expected for intramolecular concerted processes. The CD of (+)-(E)- and (?)-(Z)- 92 clearly showed that their tricyclic skeletons possess enantiomorphic structures (cf. Fig. 1). Similar results were obtained from the acid-catalyzed rearrangement of (?)-(S)-N-(3′-chloro-1′phenylprop-2′-ynyl)-2,6-dimethylaniline ((?)- 45 ; cf. Table 7). The recovered starting material exhibited in this case a loss of 48% of its original optical purity, showing that the Cl substituent favors the heterolytic cleavage of the N–C(1′) bond in (?)- 45. A still higher degree (78%) of loss of optical activity of the starting aniline was observed in the acid-catalyzed rearrangement of (?)-(S)-2,6-dimethyl-N-[1′-(p-tolyl)prop-2′-ynyl]aniline ((?)- 42 ; cf. Scheme 25). N-[1′-(p-anisyl)prop-2-ynyl]-2,4,6-trimethylaniline( 43 ; cf. Scheme 25) underwent no acid-catalyzed [3,3]-sigmatropic rearrangement at all. The acid-catalyzed rearrangement of N-(1′,1′-dimethylprop-2′-ynyl)aniline ( 25 ; cf. Scheme 10) in 1N H2SO4/BuOH at 100° led to no product formation due to the sensitivity of the expected product 53 against the reaction conditions. On the other hand, the acid-catalyzed rearrangement of the corresponding 3′-Cl derivative at 130° in aqueous H2SO4 in ethylene glycol led to the formation of 1,2,3,4-tetrahydro-2,2-dimethylquinolin-4-on ( 54 ; cf. Scheme 10), the hydrolysis product of the expected 4-chloro-1,2-dihydro-2,2-dimethylquinoline ( 56 ). Similarly, the acid-catalyzed rearrangement of N-(3′-bromo-1′-methylprop-2′-ynyl)-2,6-diisopropylaniline ( 37 ; cf. Scheme 21) yielded, by loss of one i-Pr group, 1,2,3,4-tetrahydro-8-isopropyl-2-methylquinolin-4-one ( 59 ).  相似文献   

2.
The structures of the main carotenoid pigments from the mutant 1-207 of Rhizobium lupini were elucidated by spectroscopic techniques (UV./VIS., CD., 270 MHz 1H-NMR., and MS.). Ten carotenoids were identified, namely β,β-carotene ( 1 ), β,β-caroten-4-one (echinenone, 2 ), β,β-carotene-4,4′-dione (canthaxanthin, 3 ), (3S)-3-hydroxy-β,β-caroten-4-one ((3S)-3-hydroxyechinenone, 4 ), (2R, 3R)-β,β-carotene-2,3-diol ( 5 ), (3S)-3-hydroxy-β,β-carotene-4,4′-dione ((3S)-adonirubin, 6 ), (2R, 3S)-2,3-dihydroxy-β,β-caroten-4-one ( 7 ), (2R, 3S)-2,3-dihydroxy-β,β-caroten-4,4′-dione ( 8 ), (2R, 3S, 2′R, 3′R)-2,3,2′,3′-tetrahydroxy-β,β-caroten-4-one ( 9 ) and the corresponding (2R, 3S, 2′R, 3′S)-4,4′-dione ( 10 ). Structures 5, 7, 8 and 10 have not been reported before. From the observed carotenoid pattern it is concluded that in this mutant the oxidation to 4-oxo compounds is favoured compared to the hydroxylation at C(3) and C(2).  相似文献   

3.
2-(1′-Arylallyl)-phenols ( 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 ) are transformed on heating in N, N-diethylaniline at 225° into trans-2-aryl-3-methyl-coumarans ( 26 , 29 , 32 , 34 , 36 , 38 , 40 , 42 ) in excellent yields. The corresponding cis-coumarans are minor products. Similar thermal behaviour is shown by 2-(1′-vinylallyl)-phenols ( 7 , 8 ) which are thermally converted into trans-3-methyl-2-vinyl-coumarans ( 24 , 19 ) and 5-methyl-2,5-dihydro-(1-benzoxepins) ( 25 , 18 ). The latter compounds are thermally unstable and rearrange to give approximatively 3:1 mixtures of trans- and cis-3-methyl-2-vinyl-coumarans ( 24 , 19 ). Reaction mechanisms for these new thermal rearrangements are discussed in schemes 2, 3 and 4. The 2-(1′-arylallyl)-phenols 9 , 12 and 14 yield under acidic conditions (HBr/HOAc) the expected 3-aryl-2-methyl-coumarans 28 , 35 , 39 along with 2-aryl-3-methyl-coumarans 26 , 34 , 38 and 2-aryl-2-methyl-coumarans 44 , 45 , 46 . The intervention of phenonium ions is discussed for these reactions (cf. scheme 5). When the 2-(1′-arylallyl)-phenols 12 and 14 were irradiated in benzene solution with a mercury high pressure lamp, the main products obtained were 3-aryl-2-methyl-coumarans 35 and 39 which were formed rapidly. 2-Aryl-3-methyl-coumarans yield also 3-aryl-2-methyl-coumarans, when irradiated in benzene solution.  相似文献   

4.
It is shown that treatment of indolines like 4a-methyl-1,2,3,4,4a,9a-hexahydrocarbazole ( 1 ) and even indoline-alkaloids like 5 or 6 (cf. scheme 1) with KMnO4 in boiling acetone solution leads to the indolenines 10, 29 and 33 , respectively, and, in relatively high yields, to N,N′- or C,N-coupling products (cf. schemes 2 and 5). The results of the oxidation of 6- or 8-methoxy-indolines are shown in schemes 3 and 4, respectively. Analogous ‘dimeric’ dehydrogenation products are observed when tetrahydroquinolines ( 8 and 9 , resp.) are treated with KMnO4 (cf. schemes 7 and 8, resp.). The formation of the bis-compounds is almost certainly due to the coupling of two intermediate indolenyl or tetrahydroquinolyl radicals. The cleavage of the hydrazine derivatives 11 or 17 (scheme 9) also leads to ‘dimeric’ C,N-coupling products. By heating the hydrazine derivative 17 with aqueous HCl, a complete cleavage into indoline 2 and the indolenines 16 and 20 is observed. The reaction is rationalized in scheme 10. So far no naturally occurring alkaloids related to the above mentioned C,N-coupling products have been found.  相似文献   

5.
Thermal (E), (Z)-Isomerizations of Substituted Propenylbenzenes The thermal isomerizations of (E)- and (Z)-3,5-dimethyl-2-(1′-propenyl)phenol ((E)- and (Z)- 3 ), (E)- and (Z)-N-methyl-2-(1′-propenyl)anilin ((E)- and (Z)- 4 ), (E)- and (Z)-3,5-dimethyl-2-(1′-propenyl)anilin ((E)- and (Z)- 5 , (E)- and (Z)-2-(1′-propenyl)mesitylene ((E)- and (Z- 6 ), (E)- and (Z)-2-(1′-propenyl)mesitylene ((E)- and (Z)- 7 ), (E)- and (Z)-2-(1′-propenyl)toluene ((E)- and (Z)- 8 ), (E)- and (Z)-4-(1′-propenyl)toulene ((E)- and (Z)- 9 ) as well as of (E)- and (Z)-2-(2′-butenyl)-mesitylene ((E)- and (Z)- 10 ) in decane solution were studied (Scheme 2). Whereas the isomerization of the 2-propenylphenols (E)- and (Z)- 3 occurs already between 130 and 150° (cf. Table 1), the isomerization of the 2-propenylanilins 4 and 5 takes place only at temperatures between 220 and 250° (cf. Tables 2 and 3). The activation values and the experiments using N-deuterated 4 (cf. Scheme 4) show that 2-propenylphenols and -anilins isomerize via sigmatropic [1,5]-hydrogen-shifts. For the isomerization of the methyl-substituted propenylbenzenes temperatures > 360° are required (cf. Tables 4 and 5). The activation values of the isomerization of (E)- and (Z)- 6 and (E)- and (Z)- 9 are in accord with those of other (E), (Z)-isomerizations which occur via vibrationally excited singlet biradicals (cf. Table 7). Nevertheless, thermal isomerization of 2′-d-(Z)- 8 (cf. Scheme 6) demonstrates that during the reaction deuterium is partially transfered into the ortho-methyl group, i.e. 1,5-hydrogen-shifts must have participated in isomerization of (E)- and (Z)- 8 (cf. Scheme 8). Under the equilibrium conditions 2,4,6-trimethylindan ( 17 ) is formed slowly at 368° from (E)- and (Z)- 6 , very probably via a radical 1,4-hydrogen-shift (cf. Scheme 9). In a similar way 2-ethyl-4,6-dimethylindan ( 19 ; cf. Table 6) arises from (E)- and (Z)- 7 . Thermolysis of (E)- and (Z)- 10 in decane solution at 367° results in almost no (E),(Z)-isomerization. At prolonged heating 19 and 2,5,7-trimethyl-1,2,3,4-tetrahydronaphthalene ( 20 ) are formed; these two products arise very likely from an intermolecular radical process (cf. Scheme 10).  相似文献   

6.
Investigations on Aromatic Amino-Claisen Rearrangements The thermal and acid catalysed rearrangement of p-substituted N-(1′,1′-dimethylallyl)anilines (p-substituent=H (5) , CH3 (6) , iso-C3H7 (7) , Cl (8) , OCH3 (9) , CN (10) ), of N-(1′,1′-dimethylallyl)-2,6-dimethylaniline (11) , of o-substituted N-(1′-methylallyl)anilines (o-substituent=H (12) , CH3 (13) , t-C4H9 (14) , of (E)- and (Z)-N-(2′-butenyl)aniline ((E)- and (Z)- 16 ), of N-(3′-methyl-2′-butenylaniline (17) and of N-allyl- (1) and N-allyl-N-methylaniline (15) was investigated (cf. Scheme 3). The thermal transformations were normally conducted in 3-methyl-2-butanol (MBO), the acid catalysed rearrangements in 2N -0,1N sulfuric acid. - Thermal rearrangements. The N-(1′,1′-dimethylallyl)anilines rearrange in MBO at 200-260° with the exception of the p-cyano compound 10 in a clean reaction to give the corresponding 2-(3′-methyl-2′-butenyl)anilines 22–26 (Table 2 and 3). The amount of splitting into the anilines is <4% ( 10 gives ? 40% splitting). The secondary kinetic deuterium isotope effect (SKIDI) of the rearrangement of 5 and its 2′,3′,3′-d3-isomer 5 amounts to 0.89±0.09 at 260° (Table 4). This indicates that the partial formation of the new s?-bond C(2), C(3′) occurs already in the transition state, as is known from other established [3,3]-sigmatropic rearrangements. The rearrangement of the N-(1′-methylallyl)anilines 12–14 in MBO takes place at 290–310° to give (E)/(Z)-mixtures of the corresponding 2-(2′-Butenyl)anilines ((E)- and (Z)- 30,-31 , and -32 ) besides the parent anilines (5–23%). Since a dependence is observed between the (E)/(Z)-ratio and the bulkiness of the o-substituent (H: (E)- 30 /(Z)- 30 =4,9; t-C4H9: (E)- 32 /(Z)- 32 =35.5; cf. Table 6), it can be concluded, that the thermal amino-Claisen rearrangement occurs preferentially via a chair-like transition state (Scheme 22). Methyl substitution at C(3′) in the allyl chain hinders the thermal amino-Claisen-rearrangement almost completely, since heating of (E)-and (Z)- 16 , in MBO at 335° leads to the formation of the expected 2-(1′-methyl-allyl) aniline (33) to an extent of only 12 and 5%, respectively (Scheme 9). The main reaction (?60%) represents the splitting into aniline. This is the only observable reaction in the case of 17 . The inversion of the allyl chain in 16 - (E)- and (Z)- 30 cannot be detected - indicated that 33 is also formed in a [3, 3]-sigmatropic process. This is also true for the thermal transformation of N-allyl- (1) and N-allyl-N-methylaniline (15) into 2 and 34 , respectively, since the thermal rearrangement of 2′, 3′, 3′-d3- 1 yields 1′, 1′, 2′-d3- 2 exclusively (Table 8). These reaction are accompanied to an appreciable extent by homolysis of the N, C (1′) bond: compound 1 yields up to 40% of aniline and 15 even 60% of N-methylaniline ((Scheme 10 and 11). The activation parameters were determined for the thermal rearrangements of 1, 5, 12 and 15 in MBO (Table 22). All rearrangements show little solvent dependence (Table 5, 7 and 9). The observed ΔH values are in the range of 34-40 kcal/mol and the ΔS values very between -13 to -19 e.u. These values are only compatible with a cyclic six-membered transition state of little polarity. - Acid catalysed rearrangements. - The rearrangement of the N-(1′, 1′-dimethylallyl) anilines 5-10 occurs in 2N sulfuric acid already at 50-70° to give te 2-(3′-methyl-2′-butenyl)anilines 22-27 accompanied by their hydrated forms, i.e. the 2-(3′-hydroxy-3′-methylbutyl) anilines 35-40 (Tables 10 and 11). The latter are no more present when the rearrangement is conducted in 0.1 N sulfuric acid, whilst the rate of rearrangement is practically the same as in 2 N sulfuric acid (Table 12). The acid catalysed rearrangements take place with almost no splitting. The SKIDI of the rearrangement of 5 and 2′, 3′, 3′-d3- 5 is 0.84±0.08 (2 N H2SO4, 67, 5°, cf. Table 13) and thus in accordance with a [3,3]-sigmatropic process which occurs in the corresponding anilinium ions. Consequently, the rearrangement of a 1:1 mixture of 2′, 3′, 3′-d3- 5 and 3, 5-d2- 5 in 2 N sulfuric acid at 67, 5° occurs without the formation of cross-products (Scheme 13). In the acid catalysed rearrangement of the N-1′-methylallyl) anilines 12-14 at 105-125° in 2 N sulfuric acid the corresponding (E)- and (Z)-anilines are the only products formed (Table 14 and 15). Again no splitting is observed. Furthermore, a dependence of the observed (E)/(Z) ratio and the bulkiness of the o-substituent ( H : (E)/(Z)- 30 = 6.5; t- C 4 H 9: (E)- 32 /(Z)- 32 = 90; cf. Table 15) indicates that also in the ammonium-Claisen rearrangement a chair-like transition state is preferentially adopted. In contrast to the thermal rearrangement the acid catalysed transformation in 2 N-O, 1 N sulfuric acid (150-170°) of (E)- and (Z)- 16 as well as of 1 and 15 , occurs very cleanly to yield the corresponding 2-allylated anilines 33, 2 and 34 (Scheme 15 and 18). The amounts of the anilines formed by splitting are <2%. During longer reaction periods hydration of the allyl chain of the products occurs, and in the case of the rearrangement of (E)- and )Z)- 16 the indoline 45 is formed (Scheme 15 and 18). All transformations occur with inversion of the allyl chain. This holds also for the rearrangement of 1 , since 3′, 3′-d2- 1 gives only 1′, 1′-d2- 2 (Scheme 17). The activation parameters were determined for the acid catalysed rearrangement of 1, 5, 12 and 15 in 2 N sulfuric acid (Table 22). The ΔH values of 27-30 kcal-mol and the ΔS values of +9 to -12 e.u. are in agreement with a [3, 3]-sigmatropic process in the corresponding anilinium ions. The acceleration factors (kH+/kΔ) calculated from the activation parameters of the acid catalysed and thermal rearrangements of the anilines are in the order of 105 - 107. They demonstrate that the essential driving force of the ammonium-Claisen rearrangement is the ‘delocalisation of the positive charge’ in the transition state of these rearrangements (cf. Table 23). Solvation effects in the anilinium ions, which can be influenced sterically, also seem to play a role. This is impressively demonstrated by N-(1′, 1′-dimethylallyl)-2, 6-dimethylaniline (11) : its rearrangement into 4-(1′, 1′-dimethylallyl)-2, 6-dimethylaniline (43) cannot be achieved thermally, but occurs readily at 30° in 2 N sulfuric acid. From a preparative standpoint the acid catalysed rearrangement in 2 N-0, 1 N sulfuric acid of N-allylanilines into 2-allylanilines, or if the o-positions are occupied into 4-allylanilines, is without doubt a useful synthetic method (cf. also [17]).  相似文献   

7.
A chiral economic synthesis of (R)- and (S)-muscone using the cyclofragmentation of epoxysulfones Starting with isobutyric acid (2) and using a microbiological oxidation with pseudomonas putida (S)-β-hydroxy-iso-butyric acid (3) has been prepared. From this /pseudosymmetrical: (see text) intermediate the two enantiomeric bromo derivatives 8 (R) and 20 (S) have been synthesized (cf. scheme 4) by altering the sequence of the reactions (cf. scheme 3). A Grignard reaction starting from the two bromo compounds 8 and 20 and from cyclododecanone 1 produced after hydrogenolysis the two enantiomeric dialcohols 9 and 21 (1 + 8 → 9, 1 + 20 → 21 , cf. scheme 5). The subsequent transformations led to the two enantiomeric olefin derivatives 12 and 24 . Oxidation of 12 with peracid produced a mixture of the two epoxy-sulfones 13 and 14 (cf. scheme 6). The olefin-derivative 24 was oxidized to the corresponding mixture of 25 and 26 . A one pot cyclofragmentation (cf. [4] and scheme 6) produced a mixture of (E)- and (Z)-3-methylcyclopentadec-4-en-1-one (13 + 14 → 15 + 16, 25 + 26 → 27 + 28) . The final hydrogenation led to natural (R)- and unnatural (S-muscone (3-methylcyclopentadecanone). The achiral starting material has been transformed to the desired optically active target products without loss of material with undesired absolute configuration. The authors used the notion of chiral economic synthesis to characterize synthetic sequences with the above mentioned features.  相似文献   

8.
《Electroanalysis》2003,15(13):1101-1107
The voltammetric behavior of the superoxide dismutase/catalase mimics [(N,N′‐bis(salicylidene)ethylenediamine)Mn(III)]Cl (or salenMn(III) chloride) 1 and [(N,N′‐bis(3‐methoxysalicylidene)ethylenediamine)Mn(III)]Cl (or 3,3′‐methoxysalenMn(III) chloride) 2 in acetonitrile is described. Both compounds show quasi‐reversible one‐electron reductions to the Mn(II) compound. Electroanalytical techniques are used to follow the reaction between superoxide and 1 and 2 and it is shown that it is the reduced Mn(II) compounds which scavenge superoxide. It is also shown that both compounds electrocatalytically generate superoxide in the presence of dissolved dioxygen. The rate constant for this reaction was determined for both compounds using microelectrode steady state voltammetry. A general reaction scheme for interactions between these compounds and both dissolved dioxygen and superoxide is proposed.  相似文献   

9.
The synthesis of novel unsymmetrically 2,2‐disubstituted 2H‐azirin‐3‐amines with chiral auxiliary amino groups is described. Chromatographic separation of the mixture of diastereoisomers yielded (1′R,2S)‐ 2a , b and (1′R,2R)‐ 2a , b (c.f. Scheme 1 and Table 1), which are synthons for (S)‐ and (R)‐2‐methyltyrosine and 2‐methyl‐3′,4′‐dihydroxyphenylalanine. Another new synthon 2c , i.e., a synthon for 2‐(azidomethyl)alanine, was prepared but could not be separated into its pure diastereoisomers. The reaction of 2 with thiobenzoic acid, benzoic acid, and the amino acid Fmoc‐Val‐OH yielded the monothiodiamides 11 , the diamides 12 (cf. Scheme 3 and Table 3), and the dipeptides 13 (cf. Scheme 4 and Table 4), respectively. From 13 , each protecting group was removed selectively under standard conditions (cf. Schemes 5–7 and Tables 5–6). The configuration at C(2) of the amino acid derivatives (1R,1′R)‐ 11a , (1R,1′R)‐ 11b , (1S,1′R)‐ 12b , and (1R,1′R)‐ 12b was determined by X‐ray crystallography relative to the known configuration of the chiral auxiliary group.  相似文献   

10.
Irradiation of 4-Allylated 2,6-Dimethylanilines in Methanol 4-Allyl-, 4-(1′-methylallyl)-, 4-(2′-butenyl)-, and 4-(1′,1′-dimethylallyl)-2,6-dimethylaniline ( 14–17 ; cf. Scheme 3) were obtained by the acid catalysed, thermal rearrangement of the corresponding N-allylated anilines in good yields. Aniline 14 , when irradiated with a high pressure mercury lamp through quartz in methanol, yielded as main product 4-(2′-methoxypropyl)-2,6-dimethylaniline ( 22 ; cf. Scheme 4) and, in addition, 2,6-dimethyl-4-propylaniline ( 18 ) and 4-cyclopropyl-2,6-dimethylaniline ( 23 ). The analogous products, namely erythro- and threo-4-(2′-methoxy-1′-methylpropyl)-2,6-dimethylaniline (erythro- and threo- 24 ), 2,6-dimethyl-4-(1′-methylpropyl)aniline ( 19 ), trans- and cis-2,6-dimethyl-4-(2′-methylcyclopropyl)aniline (trans- and cis- 25 ), as well as small amounts of 4-ethyl-2,6-dimethylaniline ( 26 ), were formed by irradiation of 15 in methanol (cf. Scheme 5). When this photoreaction was carried out in O-deuteriomethanol, erythro- and threo- 24 showed an up-take of one deuterium atom in the side chain. The mass spectra of erythro- and threo- 24 revealed that in 50% of the molecules the deuterium was located at the methyl group at C(1′) and in the other 50% at the methyl group at C(2′) (cf. Scheme 6). This is a good indication that the methanol addition products arise from methanolysis of intermediate spiro[2.5]octa-4,7-dien-6-imines (cf. Scheme 7). This assumption is further supported by the photoreaction of 17 in methanol (cf. Scheme 8) which led to the formation of 4-(2′-methoxy-1′,2′-dimethylpropyl)-2,6-dimethylaniline ( 28 ) as main product. The occurrence of a rearranged side chain in 28 can again be explained by the intervention of a spirodienimine 31 (cf. Scheme 9). In comparison with 14, 15 and 17 , the 2′-butenylaniline 16 reacted only sluggishly on irradiation in methanol (cf. Scheme 10). It is suggested that all photoproducts - except for the cyclopropyl derivatives which are formed presumably via a triplet di-π-methane rearrangement - arise from an intramolecular singlet electron-donor-acceptor complex between the aniline and ethylene chromophor of the side chain. Protonation of this complex at C(3′) or C(2′) will lead to diradicals (e.g. 33 and 34 , respectively, in Scheme 11). The diradicals of type 33 undergo ring closure to the corresponding spirodienimine intermediates (e.g. 31 ) whereas the diradicals of type 34 take up two hydrogen atoms to yield the photo-hydrogenated compounds (e.g. 21 ) or undergo to a minor extent fragmentation to side chain degraded products (e.g. 30 ; see also footnote 7).–Irradiation of 4-ally-2,6-dimethylaniline ( 14 ) in benzene or cyclohexane yielded the corresponding azo compound 38 (cf. Scheme 12), whereas its N,N-dimethyl derivative 41 was transformed into the cyclopropyl derivative 42 . The allyl moiety in 14 is not necessary for the formation of azo compounds since 2,4,6-trimethylaniline ( 39 ) exhibited the same type of photoreaction in benzene solution.  相似文献   

11.
Previously unknown 3′‐R1‐5‐R2‐spiro[indoline‐3,6′‐[1,2,4]triazino[2,3‐c]quinazoline]‐2,2′‐(7′H)‐diones and their N‐substituted analogues were obtained via reaction of 6‐R1‐3‐(2‐aminophenyl)‐1,2,4‐triazin‐5‐ones with isatin and its substituted derivatives. It was shown that alkylation of 3′‐R1‐5‐R2‐spiro[indoline‐3,6′‐[1,2,4]triazino[2,3‐c]quinazolin]‐2,2′‐(7′H)‐diones by N‐R3‐chloroacetamides or chloroacetonitrile in the presence of а base proceeds by N‐1 atom of isatin fragment. The spectral properties (1H and 13C NMR spectra) of synthesized compounds were studied, and features of spectral patterns were discussed. The high‐effective anticonvulsant and radical scavenging agents among 3′‐R1‐5‐R2‐spiro[indoline‐3,6′‐[1,2,4]triazino[2,3‐c]quinazolin]‐2,2′(7′H)‐diones and their N‐substituted derivatives were detected. It was shown that compounds 2.2 , 2.8 , and 3.1 exceed or compete the activity of the most widely used in modern neurology drug—lamotrigine on the pentylenetetrazole‐induced seizures model. The aforementioned fact may be considered as a reason for further profound study of synthesized compounds using other pathology models.  相似文献   

12.
2-(1′-cis,3′-cis-)- and 2-(1′-cis,3′-trans-Penta-1′,3′-dienyl)-phenol (cis, cis- 4 and cis, trans- 4 , cf. scheme 1) rearrange thermally at 85–110° via [1,7 a] hydrogen shifts to yield the o-quinomethide 2 (R ? CH3) which rapidly cyclises to give 2-ethyl-2H-chromene ( 7 ). The trans formation of cis, cis- and cis, trans- 4 into 7 is accompanied by a thermal cis, trans isomerisation of the 3′ double bond in 4. The isomerisation indicates that [1,7 a] hydrogen shifts in 2 compete with the electrocyclic ring closure of 2 . The isomeric phenols, trans, trans- and trans, cis- 4 , are stable at 85–110° but at 190° rearrange also to form 7 . This rearrangement is induced by a thermal cis, trans isomerisation of the 1′ double bond which occurs via [1, 5s] hydrogen shifts. Deuterium labelling experiments show that the chromene 7 is in equilibrium with the o-quinomethide 2 (R ? CH3), at 210°. Thus, when 2-benzyl-2H-chromene ( 9 ) or 2-(1′-trans,3′-trans,-4′-phenyl-buta1′,3′-dienyl)-phenol (trans, trans- 6 ) is heated in diglyme solution at >200°, an equilibrium mixture of both compounds (~ 55% 9 and 45% 6 ) is obtained.  相似文献   

13.
1-Amino-2-phthalimido-diazene-1-oxides: Formation, Properties and Fragmentation Reactions into Imido- and Amino-nitrenes1) Oxidatively generated phthalimido-nitrene ( 1 ) reacts with the nitrosoamines 2a-d (see Scheme 1) to give the corresponding (Z)-1-amino-2-phthalimido-diazene-1-oxides 3a-d in good yields. With the O-nitroso compound 2e , no addition of the nitrene 1 took place. The constitution the adducts 3 (R = NR′2) is deduced from their spectroscopic properties (UV., IR., 1H-NMR. and MS.) as compared to those of (Z)-1-aryl- and (Z)-1-alkyl-2-phthalimido-diazene-1-oxides 3 (R = aryl and alkyl, resp.). The (Z)-configuration of 3 (R = NR′2) follows from an X-ray analysis which is reported separately. Compounds 3 (R = NR′2) are cleaved photolytically as well as by acid to the corresponding nitrosoamines 2 (R = NR′2) and the nitrene 1 , which could be trapped by cyclohexene to give 40% of 7-phthalimido-7-azabicyclo [4.1.0]heptane ( 8 ) and by dimethylsulfoxide to yield 96% of S, S-dimethyl-N-phthalimido-sulfoximide ( 13 ). Nucleophilic attack leads to fragmentation of 3 (R = NR′2) into derivatives of phthalic acid and degradation products of intermediate aminonitrenes 24 corresponding to the respective nitrosoamines 2 (R = NR′2) with loss of oxygen. A general rationalization for the formation of 24 includes as a key step of N- to C-migration of the O-atom (see Scheme 6). The final fate of 24 is depending on the type of the nucleophile used. Thus, hydrazinolysis of 3b and of 3c generates besides N, N′-phthaloylhydrazine ( 15 ), morpholine ( 14 ) from 3b and 1, 3-dihydroisoindole ( 16 ) together with 6′-methylidene-1, 2, 3, 4-tetrahydronaphthalene-2-spiro-1′-cyclohexa-2′, 4′-diene ( 17 ) from 3c (see Scheme 5). Treatment of 3b and of 3c with sodium methylate leads in both reactions to monomethyl phthalate ( 33 ) and, with 3b , to 1, 2-dimorpholinodiazene ( 31 ) and, with 3c , to 17 (see Scheme 7). Finally, the reaction of 3b with diethylamine generates N, N-diethylphthalamic acid ( 36 ), morpholine ( 14 ), 1,1,4,4-tetraethyl-2-tetrazene( 34 ) and l,l-diethyl-4,4-(3-oxapentamethylene)-2-tetrazene ( 35 ) (see Scheme 8).  相似文献   

14.
A simple environmentally friendly solid‐phase microwave‐assisted method was used to synthesis of the 1,3′‐diazaflavanone ( 2 ) and 1,3′‐diazaflavone ( 3 ) from the cyclization of 2′‐amino (E)‐3″‐azachalcone ( 1 ). Ten new N‐alkyl (C5–12,14,15)‐substituted 1,3′‐diazaflavanonium bromides ( 2a–j ) were prepared from compound 2 with corresponding alkyl halides in acetonitrile under reflux. In addition, nine new N,N′‐dialkyl (C5–12,14)‐substituted 1,3′‐diazaflavonium bromides ( 3a–i ) were also synthesized from compound 3 with corresponding alkyl halides using basic silica in acetonitrile. The antimicrobial activities of compounds 1–3 , 2a–j , and 3a–i were tested against Gram‐positive (G+) (Bacillus subtilis, Staphylococcus epidermidis, Staphylococcus aureus, and Enterococcus faecalis) and Gram‐negative (G?) (Escherichia coli, Klebsiella pneumonia, Pseudomonas aeruginosa, Proteus vulgaris, Salmonella typhimirium, Yersinia pseudotuberculosis, and Enterobacter cloaceae) microorganisms. They showed good antimicrobial activity against the Gram‐positive bacteria tested with the minimal inhibitory concentration values less than 7.8 μg/mL in most cases. The optimum length of the alkyl chain for better and broader activity is situated in the range of 9–12 carbon atoms in the series of compounds 2a–j and five to six carbon atoms in the series of compounds 3a–i . The nonalkylated compounds 1–3 were not effective, as were the ones alkylated with five or six C alkyl groups ( 2a and 2b ) and 8–13 C alkyl groups for N,N′‐dialkyl compounds ( 3c–3i ). The antimicrobial activity increased as the length of the alkyl substitution increased from 8 to 12 carbons in compounds 2a–j . However, antimicrobial activity decreased as the length of the alkyl substitution increased from 7 to 13 carbons in compounds 3c–i . J. Heterocyclic Chem., (2012)  相似文献   

15.
Reported herein is a study of the unusual 3′–3′ 1,4‐GG interstrand cross‐link (IXL) formation in duplex DNA by a series of polynuclear platinum anticancer complexes. To examine the effect of possible preassociation through charge and hydrogen‐bonding effects the closely related compounds [{trans‐PtCl(NH3)2}2(μ‐trans‐Pt(NH3)2{NH2(CH2)6NH2}2)]4+ (BBR3464, 1 ), [{trans‐PtCl(NH3)2}2(μ‐NH2(CH2)6NH2)]2+ (BBR3005, 2 ), [{trans‐PtCl(NH3)2}2(μ‐H2N(CH2)3NH2(CH2)4)]3+ (BBR3571, 3 ) and [{trans‐PtCl(NH3)2}2{μ‐H2N(CH2)3‐N(COCF3)(CH2)4}]2+ (BBR3571‐COCF3, 4 ) were studied. Two different molecular biology approaches were used to investigate the effect of DNA template upon IXL formation in synthetic 20‐base‐pair duplexes. In the “hybridisation directed” method the monofunctionally adducted top strands were hybridised with their complementary 5′‐end labelled strands; after 24 h the efficiency of interstrand cross‐linking in the 5′–5′ direction was slightly higher than in the 3′–3′ direction. The second method involved “postsynthetic modification” of the intact duplex; significantly less cross‐linking was observed, but again a slight preference for the 5′–5′ duplex was present. 2D [1H, 15N] HSQC NMR spectroscopy studies of the reaction of [15N]‐ 1 with the sequence 5′‐d{TATACATGTATA}2 allowed direct comparison of the stepwise formation of the 3′–3′ IXL with the previously studied 5′–5′ IXL on the analogous sequence 5′‐d(ATATGTACATAT)2. Whereas the preassociation and aquation steps were similar, differences were evident at the monofunctional binding step. The reaction did not yield a single distinct 3′–3′ 1,4‐GG IXL, but numerous cross‐linked adducts formed. Similar results were found for the reaction with the dinuclear [15N]‐ 2 . Molecular dynamics simulations for the 3′–3′ IXLs formed by both 1 and 2 showed a highly distorted structure with evident fraying of the end base pairs and considerable widening of the minor groove.  相似文献   

16.
Three water-soluble arsenic compounds were isolated from the green seaweed Codium fragile. These compounds were identified as 1-glycerophosphoryl-2-hydroxy-3-[5′-deoxy-5′-(dimethylarsinoyl)-β-ribofuranosyloxy]propane (1a), 1′ -(1,2-dihydroxypropyl)-5′ -deoxy-5′ -(dimethylarsinoyl)-β-ribofuranoside (1b), and dimethylarsinic acid ((CH3)2AsOOH). The structures of these compounds were ascertained by 1H NMR spectroscopy. Compounds 1a and 1b accounted for 60 % and dimethylarsinic acid for 5% of the water-soluble arsenic.  相似文献   

17.
Three new chalcones, 3′‐carboxymethyl‐4,2′‐dihydroxy‐4′‐methoxychalcone ( 1 ), (±)‐4,2′,4′‐trihydroxy‐3′‐[(3‐hydroxy‐2,2‐dimethyl‐6‐methylenecyclohexyl)methyl]chalcone ( 2 ), and 2′′‐hydroxyangelichalcone ( 3 ), were isolated from the aerial parts of Angelica keiskei (Umbelliferae) together with five known compounds, artocarmitin A ( 4 ), (+)‐cis‐(3′R,4′R)‐methylkhellactone ( 5 ), (?)‐trans‐(3′R,4′S)‐methylkhellactone ( 6 ), 3,4‐dihydroxanthotoxin ( 7 ), and (Z)‐p‐coumaryl alcohol ( 8 ). The known compounds 4  –  8 were identified from Akeiskei for the first time. The structures of 1  –  3 were elucidated by interpreting spectroscopic data including 1D‐ and 2D‐NMR.  相似文献   

18.
The reaction between tridentate NNO donor hydrazone ligands, (E)-2-cyano-N′-(phenyl(pyridin-2-yl)methylene)acetohydrazide (HL1) and (E)-2-cyano-N′-(1-(pyridin-2-yl)ethylidene)acetohydrazide (HL2), with MnCl2·4H2O in methanol resulted in [Mn(HL1)Cl2(CH3OH)] (1) and [Mn(HL2)Cl2(CH3OH)] (2). Molecular structures of the complexes were determined by single-crystal X-ray diffraction. All of the investigated compounds were further characterized by elemental analysis, FT-IR, TGA, and UV–Vis spectroscopy. These complexes were used as catalysts for olefin oxidation in the presence of tert-butylhydroperoxide (TBHP) as an oxidant. Under similar experimental conditions with equal manganese loading, the presence of [Mn(HL2)Cl2(CH3OH)] (2) resulted in higher conversion than [Mn(HL1)Cl2(CH3OH)] (1).  相似文献   

19.
Treatment of N,N′‐bis(aryl)formamidines (FXylH = N,N′‐bis(2,6‐dimethylphenyl)formamidine, FEtH = N,N′‐bis(2,6‐diethylphenyl)formamidine, FisoH = N,N′‐bis(2,6‐diisopropylphenyl)formamidine) with nBuLi in the presence of tmeda (= N,N,N′,N′‐tetramethylethylenediamine) led to deprotonation of the amidine affording [Li(FXyl)(tmeda)] ( 1 ), [Li(FEt)(tmeda)] ( 2 ) and [Li(Fiso)(tmeda)] ( 3 ) respectively. Similar treatment of FXylH and FisoH with [Na{N(SiMe3)2}] in THF and pmdeta (= N,N,N′,N″,N″‐pentamethyldiethylenetriamine) yielded [Na(FXyl)(pmdeta)] ( 4 ) and [Na(Fiso)(pmdeta)] ( 5 ). All complexes were characterised by spectroscopy (NMR and IR) and X‐ray crystallography. Due to the bulkiness of the formamidinate ligands and the multidentate nature of the supporting neutral amine ligands (tmeda and pmdeta), all compounds were mononuclear with η2‐chelating formamidinate ligands in the solid state.  相似文献   

20.
The irradiation of benzotriazoles (cf. Scheme 2) with light of 225–325 nm in protic and in aromatic solvents was investigated. In aqueous 0.1N H2SO4 benzotriazole ( 5 ) and 1-methyl-benzotriazole ( 6 ) yielded 2-amino- and 2-methylaminophenol ( 25 and 26 ), respectively (Scheme 3). In 2-propanol 6 , 5-chloro- and 6-chloro-1-methyl-benzotriazole ( 14 and 15 ) were reduced to N-methylaniline, 4-chloro- and 3-chloro-N-methyl-aniline ( 27 , 28 and 29 ), respectively (Scheme 4). When the benzotriazoles were irradiated in aromatic solvents only C, C coupling products were observed (cf. Scheme 6 and Tables 1–4). It is of importance that 5-chloro-1-methyl-benztriazole ( 14 ) when decomposed photolytically in benzene solution yielded only 4-chloro-2-phenyl-N-methyl-aniline ( 49 ) and its 6-chloro isomer only 5-chloro-2-phenyl-N-methyl-aniline ( 50 ), i.e. the intervention of benzo-1H-azirine intermediates (e.g. 53 , Scheme 8) can be excluded. The substitution patterns which are observed when 6 is irradiated in toluene, anisole, fluoro-, chloro-, bromobenzene and benzonitrile (cf. Table 4) can best be explained by assuming that 6 , after loss of nitrogen, forms a diradical intermediate in the singlet state with highly zwitterionic character. 1-(1′-Alkenyl)-benzotriazoles (cf. Table 7) form on irradiation in cyclohexane solution indoles by intramolecular ring closure of the diradical intermediate and proton shift. After irradiation of 1-decyl-benzotriazole ( 8 ) in a glassy matrix at 77K a 7-line ESR. spectrum characteristic of a triplet radical is observed. This is in agreement with the fact that the lowest lying state of intermediates of type 2 (Scheme 1) should be a triplet state (cf. [21] [26]).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号