首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Merocyanine 540 (MC540) aggregation induced by adding KCl has been studied by resonance light scattering (RLS) and absorption spectrophotometry. In water, MC540 exists as H-dimers and monomers with absorption maxima at ~500 and 535 nm, respectively (these species lack RLS). Upon the introduction of the salt in concentrations below 0.15 M, the spectrum undergoes a hypochromic effect, without modification of its general shape. In addition to the hypochromic effect, a new broad RLS band emerges at ~420–460 nm, which arises from large H-aggregates of the dye. The formation of these aggregates does not manifest itself in absorption spectra. At KCl concentrations above the critical one (0.15 M), a new absorption band at ~517 nm emerges; simultaneously, a strong RLS band of a similar shape appears, which proves the formation of large supramolecular aggregates of MC540. Comparison of the spectrophotometry and RLS data shows that large aggregates of MC540 are more photolabile than dimers and monomers.  相似文献   

2.
The EPR spectrum of a free trapped in single crystals of chloranil changes its phase from absorption to emission when the crystal is illuminated by visible light. The time evolution of the EPR signal is discussed in terms of the interaction between the doublet species and triplet excitons produced by light excitation.  相似文献   

3.
Abstract— Neutral, acidic or basic frozen aqueous solutions of aromatic amino acids undergo photoionisation under u.v. irradiation, at 77°K. In neutral or basic solutions, photo-ejected electrons are trapped in the solvent matrix and exhibit a characteristic absorption band in the visible region. In acidic solutions electrons are trapped by protons and ESR signal spectrum of hydrogen atoms may be observed. Hydrogen atoms are also produced in low yield in neutral or basic frozen aqueous solutions, u.v. irradiated at 77°K. In basic media the ESR spectrum of 0- radical ions is observed. Kinetic studies as a function of light intensity show that photoionisation takes place after absorption of a second photon by the phosphorescent molecule in its lowest triplet state. Recombination of trapped electrons in neutral or basic solutions may be induced using secondary excitation with visible light. In all instances we could record the absorption spectrum of photolytic products of aromatic amino acids and polypeptides which are u.v. irradiated at 77°K.  相似文献   

4.
A long-lived transient with a lifetime of several hundred microseconds was observed following the flash photolysis of aqueous solutions of hematoporphyrin buffered at pH 7.5. The transient-ground state difference absorption spectrum was determined 500 microseconds after flash photolysis. The yield of this species was found to increase with increasing hematoporphyrin concentration and it was also found to depend on the excitation wavelength. The lifetime of the species is not significantly affected by the presence of oxygen. Because the triplet state of hematoporphyrin is not the only long-lived species produced by flash photolysis of aqueous hematoporphyrin solutions, the observed triplet state extinction coefficients will be lower than the true value and hence the triplet state yields of hematoporphyrin determined by the flash photolysis, "complete conversion" technique, are only upper limits. The formation of the long-lived species is discussed in terms of electron transfer between the monomer partners in hematoporphyrin dimer and aggregates which are present in aqueous solutions of hematoporphyrin, particularly in concentrated solutions.  相似文献   

5.
Evidence for the existence of a reactive triplet excited state of lumiflavin has been obtained by the flash-photolysis technique. The triplet state is formed in high yield on the irradiation of flavin solutions in water or chloroform by visible light, and it has been demonstrated that it can transfer its energy to a second molecular species. The flavin-sensitised oxidation of two purine nucleotides, adenylic and guanylic acids, has been studied by flash-photolysis and by long-term irradiation, and the results suggest a triplet-triplet mechanism for the transfer of energy from the excited flavin to the nucleotide. Approximate absorption spectra of the triplet state and of a semiquinone of the flavin have been calculated from the complex transient absorption curves observed on flashing the flavin solution. The triplet decays by a first-order process where k1= 1·1 × 10-3. The chemiluminescence spectrum of skatole is identical with the fluorescence spectrum of o-formamidoacetophenone in the same environment Similar results for 2,3-dimethylindole lead to the identification of the acylamide anion as the emitter in indole chemiluminescence. A peroxide ring cleavage excitation mechanism is proposed. 104 sec-1 and the semiquinone by a second-order process where k2= 0·75 × 109 1.m-1 sec-1. The rate constants and extinction coefficients obtained enable decay curves to be calculated which fit satisfactorily those measured with the kinetic-flash apparatus.  相似文献   

6.
The hydrated dielectron is a highly correlated, two-electron, solvent-supported state consisting of two spin-paired electrons confined to a single cavity in liquid water. Although dielectrons have been predicted to exist theoretically and have been used to explain the lack of ionic strength effect in the bimolecular reaction kinetics of hydrated electrons, they have not yet been observed directly. In this paper, we use the extensive nonadiabatic mixed quantum/classical excited-state molecular dynamics simulations from the previous paper to calculate the transient spectroscopy of hydrated dielectrons. Because our simulations use full configuration interaction (CI) to determine the ground and excited state two-electron wave functions at every instant, our nonequilibrium simulations allow us to compute the absorption, stimulated emission (SE), and bleach spectroscopic signals of both singlet and triplet dielectrons following excitation by ultraviolet light. Excited singlet dielectrons are predicted to display strong SE in the mid infrared and a transient absorption in the near-infrared. The near-infrared transient absorption of the singlet dielectron, which occurs near the peak of the (single) hydrated electron's equilibrium absorption, arises because the two electrons tend to separate in the excited state. In contrast, excitation of the hydrated electron gives a bleach signal in this wavelength region. Thus, our calculations suggest a clear pump-probe spectroscopic signature that may be used in the laboratory to distinguish hydrated singlet dielectrons from hydrated electrons: By choosing an excitation energy that is to the blue of the peak of the hydrated electron's absorption spectrum and probing near the maximum of the single electron's absorption, the single electron's transient bleach signal should shrink or even turn into a net absorption as sample conditions are varied to produce more dielectrons.  相似文献   

7.
Direct laser excitation in benzene of 1,8-dihydroxy-9-anthrone (anthralin) does not lead to transient species with lifetimes in the nanosecond time regime or longer. The triplet state has been produced in benzene by pulse radiolysis and characterised in terms of its absorption spectrum (lambda max 560 nm), natural lifetime (11 microseconds), self-quenching properties (kmicrosecond = 2.6 x 10(7) l mol-1 s-1) and triplet energy (234 kJ mol-1). There is no tendency in the non-polar medium for production of either the triplet or ground state in a tautomeric form. The observed triplet state reacts with oxygen with a typical rate constant, 2.2 x 10(9) l mol-1 s-1. The products of this reaction are singlet oxygen (approximately 64%) and the anthralin radical (approximately 14%).  相似文献   

8.
Action spectra of the antileukemic and antiviral activities of merocyanine 540 (MC540) were determined using L1210 leukemia cells and human Herpes simplex virus type 1. The major peak of both action spectra aligned closely with the absorption spectrum of membrane-bound dye monomer, and by implication, the action spectrum of 1O2 generation. These results are compatible with the notion that the antileukemic and antiviral activities of MC540 are primarily attributable to membrane-bound monomer and at least in part mediated by 1O2.  相似文献   

9.
We studied the generation and decay dynamics of triplet excitons in tris-(8-hydroxyquinoline) aluminum (Alq3) thin films by using transient absorption spectroscopy. Absorption spectra of both singlet and triplet excitons in the film were identified by comparison with transient absorption spectra of the ligand molecule (8-hydroxyquinoline) itself and the excited triplet state in solution previously reported. By measuring the excitation light intensity dependence of the absorption, we found that exciton annihilation dominated under high-density excitation conditions. Annihilation rate constants were estimated to be gammaSS = (6 +/- 3) x 10(-11) cm3 s(-1) for single excitons and gammaTT = (4 +/- 2) x 10(-13) cm3 s(-1) for triplet excitons. From detailed analysis of the light intensity dependence of the quantum yield of triplet excitons under high-density conditions, triplet excitons were mainly generated through fission from highly excited singlet states populated by singlet-singlet exciton annihilation. We estimated that 30% of the highly excited states underwent fission.  相似文献   

10.
Abstract— Direct pulse photoexcitation of an antivirally active compound, hypericin sodium salt in ethanol, results in a short-lived transient, attributed to a triplet state. In the presence of reducing agents, a long-lived transient is observed, which indicates a radical anion species. In isopropanol solution, an identical triplet state is formed, accompanied by a long-lived intermediate that consists of a semiquinone-type radical. Laser excitation of hypericin sodium salt aggregates dispersed in water produces a very short-lived transient, also assigned to a triplet state, which decays, leaving an absorption spectrum, indicating a radical anion species. The latter reacts with oxygen with a rate constant of k ∼ 6 × 107 M-1 s-1, suggesting the formation of superoxide.  相似文献   

11.
The photophysical properties of merocyanine 540 have been determined in methanol solution over a modest temperature range. Triplet state population is inefficient (the limiting triplet quantum yield being 0.25) due to rapid isomerization of the central double bond from the first excited singlet state. Activation energies have been measured for isomerization from the excited singlet state (20 kJ mol-1) and for conversion of the resultant cis-isomer back to the original trans-form (63 kJ mol-1), both processes involving formation of a twisted species. The dye is easily oxidized to give an unstable adduct which decomposes on the sub-ms timescale. Reversible redox chemistry occurs upon excitation in the presence of electron acceptors. These various observations are discussed in terms of the known chemotherapeutic activity of MC540 and it is concluded that the most probable mechanisms for cytotoxicity involve either local thermal disruption of cell membranes or in situ photogeneration of toxins derived from breakdown of the dye.  相似文献   

12.
To explore the photophysics of platinum acetylide chromophores with strong two-photon absorption cross-sections, we have investigated the synthesis and spectroscopic characterization of a series of platinum acetylide complexes that feature highly pi-conjugated ligands substituted with pi-donor or -acceptor moieties. The molecules (numbered 1-4) considered in the present work are analogs of bis(phenylethynyl)bis(tributylphosphine)platinum(II) complexes. Molecule 1 carries two alkynyl-benzothiazolylfluorene ligands, and molecule 2 has two alkynyl-diphenylaminofluorene ligands bound to the central platinum atom. Compounds 3 and 4 possess two dihexylaminophenyl substituents at their ends and differ by the number of platinum atoms in the oligomer "core" (one vs two in 3 and 4, respectively). The ligands have strong effective two-photon absorption cross-sections, while the heavy metal platinum centers give rise to efficient intersystem crossing to long-lived triplet states. Ultrafast transient absorption and emission spectra demonstrate that one-photon excitation of the chromophores produces an S1 state delocalized across the two conjugated ligands, with weak (excitonic) coupling through the platinum centers. Intersystem crossing occurs rapidly (Kisc approximately 1011 s-1) to produce the T1 state, which is possibly localized on a single conjugated fluorenyl ligand. The triplet state is strongly absorbing (epsilonTT > 5 x 104 M-1 cm-1), and it is very long-lived (tau > 100 micro s). Femtosecond pulses were used to characterize the two-photon absorption properties of the complexes, and all of the chromophores are relatively efficient two-photon absorbers in the visible and near-infrared region of the spectrum (600-800 nm). The complexes exhibit maximum two-photon absorption at a shorter wavelength than 2lambda for the one-photon band, consistent with the dominant two-photon transition arising from a two-photon-allowed gerade-gerade transition. Nanosecond transient absorption experiments carried out on several of the complexes with excitation at 803 nm confirm that the long-lived triplet state can be produced efficiently via a sequence involving two-photon excitation to produce S1, followed by intersystem crossing to produce T1.  相似文献   

13.
Sub-micro-second time-resolved difference absorption spectra of a polar carotenoid analogue, 2-(all-trans-retinylidene)indan-1,3-dione (hereafter, we will call RetInd), were recorded in tetrahydrofuran at room temperature upon anthracene-sensitized triplet excitation. In addition to the typical Tn <-- T1 absorption spectrum of anthracene followed by that of RetInd, a novel transient species, which peaked at 670 nm, was detected. The lifetime and the population of the 670 nm species was not affected by the presence of oxygen but was quenched by the cation scavenger, triethylamine. Therefore, we have identified this species as a "cation". The transient 670 nm species was not generated by direct photoexcitation of RetInd in the absence of a triplet sensitizer. Therefore, this species was not generated via the T1 species of RetInd but rather via an "invisible state" of RetInd, which is generated by direct energy or electron transfer from T1 anthracene. This proposed pathway was confirmed by a singular-value decomposition followed by a global fitting analysis. The "cation" of RetInd shows vibrational structure in its absorption spectrum, and its lifetime was determined to be 15 micros. Chemical oxidation of RetInd in 2,2,2-trifluoroethanol (dichloromethane) produced a broad absorption band around 880 (1013) nm, which could be transformed into a shoulder around 640 (675) nm upon addition of increasing amounts of the oxidant, FeCl3. The former absorption band can be assigned to a radical cation, while the latter to a dication. Because of the spectral similarity, the 670 nm species can be assigned to the dication, and the "invisible state" is ascribed to the radical cation of RetInd. This is the first direct evidence for the production of a dication of a biological polyene moiety generated in non-halogenated solution following anthracene-sensitized excitation.  相似文献   

14.
In this work, we investigate the nonlinear absorption dynamics of Zn phthalocyanine in dimethyl sulfoxide (DMSO). We used single pulse and pulse train Z-scan techniques to determine the dynamics and absorption cross-sections of singlet and triplet states at 532 nm. The excited singlet state absorption cross-section was determined to be 3.2 times higher than the ground state one, giving rise to reverse saturable absorption. We also observed that reverse saturable absorption occurs from the triplet state, after its population by intersystem crossing, whose characteristic time was determined to be 8.9 ns. The triplet state absorption cross-section determined is 2.6 times higher than the ground state one. In addition, we used the white light continuum Z-scan to evaluate the singlet excited state spectrum from 450 to 710 nm. The results show two well-defined regions, one above 600 nm, where reverse saturable absorption is predominant. Below 600 nm, we detected a strong saturable absorption. A three-energy-level diagram was used to explain the experimental results, leading to the excited state absorption cross-section determination from 450 nm up to 710 nm.  相似文献   

15.
The bimolecular quenching of the first excited singlet state of oxonine by allylthiourea leads to the formation of the triplet state of the dye. This has been proved by comparison with the triplet-triplet absorption spectrum of oxonine obtained by triplet-triplet energy transfer. The conventional flash experiments suggest that the dye triplet state is produced directly rather than by radical recombination.  相似文献   

16.
Abstract— The transient absorption spectra of the intermediates produced by the 355 nm laser excitation of gilvocarcin derivatives have been investigated in various solvents. The spectra consist of a triplet-triplet absorption in the visible region and a residual absorption observed between 340 and 700 nm due to a long-lived species, assigned to the radical cation. A broad-fast decaying band with a maximum at around 700 nm attributed to the solvated electron is also seen in solutions containing a low DMSO/water volume ratio and at 266 nm irradiation of a 50% methanol/water solvent mixture. The molar absorption coefficient of the triplet state of gilvocarcin V (GV) and gilvocarcin M (GM), determined by the energy transfer method, is independent of the solvent properties and has a value of 3.0 × 104/ M cm. The triplet decay rate constants for both drugs are between 1 and 5 × 104/s. A similar initial yield and triplet decay rate constant of GV were observed in the presence of 3.4 m M thymine. Thus, a quenching rate constant of the GV's triplet state by thymine is estimated to be lower than 106/Ms. The triplet quantum yields of both antibiotics determined by using the comparative method are higher in dimethylsulfoxide (DMSO) (0.18) than are those corresponding to 25% DMSO/water (0.06). The decrease in φT in the presence of water could be attributed to an enhanced internal conversion rate constant from the S1 state or to an increase in the photoionization yield. The similarity of the transient intermediates and their yields for GV and GM suggest that their photobiological differences are due to other factors such as DNA binding constants, preferential localization of the drugs in the cell or the enhanced reactivity of the vinyl group toward cellular components.  相似文献   

17.
A series of four photodissociable Ru polypyridyl complexes of general formula [Ru(bpy)2L2](2+), where bpy = 2,2'-bipyridine and L = 4-aminopyridine (1), pyridine (2), butylamine (3), and gamma-aminobutyric acid (4), was studied by density functional theory (DFT) and time-dependent density functional theory (TDDFT). DFT calculations (B3LYP/LanL2DZ) were able to predict and elucidate singlet and triplet excited-state properties of 1-4 and describe the photodissociation mechanism of one monodentate ligand. All derivatives display a Ru --> bpy metal-to-ligand charge transfer (MLCT) absorption band in the visible spectrum and a corresponding emitting triplet (3)MLCT state (Ru --> bpy). 1-4 have three singlet metal-centered (MC) states 0.4 eV above the major (1)MLCT states. The energy gap between the MC states and lower-energy MLCT states is significantly diminished by intersystem crossing and consequent triplet formation. Relaxed potential energy surface scans along the Ru-L stretching coordinate were performed on singlet and triplet excited states for all derivatives employing DFT and TDDFT. Excited-state evolution along the reaction coordinate allowed identification and characterization of the triplet state responsible for the photodissociation process in 1-4; moreover, calculation showed that no singlet state is able to cause dissociation of monodentate ligands. Two antibonding MC orbitals contribute to the (3)MC state responsible for the release of one of the two monodentate ligands in each complex. Comparison of theoretical triplet excited-state energy diagrams from TDDFT and unrestricted Kohn-Sham data reveals the experimental photodissociation yields as well as other structural and spectroscopic features.  相似文献   

18.
Abstract— Octa-aL-alkyloxy-substituted Zn-phthalocyanines are an interesting class of far red-absorbing photosensitizers. The chemical structure, the calculated steric conformation, the observed linear optical properties and an anomalous luminescence from a higher than S, excited state are reported. To study the optical properties of higher excited states and their occupation dynamics up to delay times of 15 ns we have carried out measurements of transient absorption spectra after 14 ps pulsed, resonant B-band and Q-band excitation. From these measurements the excited state singlet-singlet and triplet-triplet spectra as well as the intersystem crossing (ISC) quantum yields are obtained. The main result is an excitation wavelength-dependent ISC quantum yield that can be explained by an additional ISC channel between higher excited singlet and triplet states. The large rate of this channel is justified by the resonance between higher triplet states, observed in the triplet-triplet spectrum and the B, absorption band. Using kinetic model calculations, a lifetime of the higher excited singlet state of some picoseconds is predicted and the influence of a two-step absorption process on the population density of this higher excited singlet state is discussed.  相似文献   

19.
Abstract— The triplet-triplet absorption spectrum of the 4'5' psoralen-thymine mono-adduct has been determined in water and methanol using the technique of laser flash photolysis. The extinction coefficient of the triplet was measured by the energy-transfer method with retinol triplet as standard, and used to determine the singlet → triplet intersystem crossing quantum yield for 353 nm excitation. Reaction rate constants for mono-adduct triplet with thymine and tryptophan were measured in water. Long-lived transient absorptions detected after quenching the mono-adduct triplet with thymine and tryptophan are assigned mainly to the corresponding mono-adduct radical anion, whose spectrum was established in separate pulse radiolysis studies of the mono-adduct in aqueous formate.
The significant singlet → triplet quantum yields found for the mono-adduct might be consistent with the involvement of triplet excited mono-adduct in DNA cross-link formation, as also may be the high reactivity obtained for the triplet with thymine. The initial quenching products observed resulted from a charge-transfer reaction.  相似文献   

20.
The electronic structure of spiro[4.4]nonatetraene 1 as well as that of its radical anion and cation were studied by different spectroscopies. The electron‐energy‐loss spectrum in the gas phase revealed the lowest triplet state at 2.98 eV and a group of three overlapping triplet states in the 4.5 – 5.0 eV range, as well as a number of valence and Rydberg singlet excited states. Electron‐impact excitation functions of pure vibrational and triplet states identified various states of the negative ion, in particular the ground state with an attachment energy of 0.8 eV, an excited state corresponding to a temporary electron attachment to the 2b1 MO at an attachment energy of 2.7 eV, and a core excited state at 4.0 eV. Electronic‐absorption spectroscopy in cryogenic matrices revealed several states of the positive ion, in particular a richly structured first band at 1.27 eV, and the first electronic transition of the radical anion. Vibrations of the ground state of the cation were probed by IR spectroscopy in a cryogenic matrix. The results are discussed on the basis of density‐functional and CASSCF/CASPT2 quantum‐chemical calculations. In their various forms, the calculations successfully rationalized the triplet and the singlet (valence and Rydberg) excitation energies of the neutral molecule, the excitation energies of the radical cation, its IR spectrum, the vibrations excited in the first electronic absorption band, and the energies of the ground and the first excited states of the anion. The difference of the anion excitation energies in the gas and condensed phases was rationalized by a calculation of the Jahn‐Teller distortion of the anion ground state. Contrary to expectations based on a single‐configuration model for the electronic states of 1 , it is found that the gap between the first two excited states is different in the singlet and the triplet manifold. This finding can be traced to the different importance of configuration interaction in the two multiplicity manifolds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号