首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interdigitated electrode (IDE) arrays with nanometer-scale gaps have been utilized to enhance the sensitivity of affinity-based detection. The geometry of nanogap IDEs was first optimized on the basis of simulations of the electric field and current density. It was determined that the gap (G) between the electrodes was the most important geometric parameter in determining the distribution and strength of the electric field and the current density compared to the width (W) and height (H) of the IDEs. Several devices were materialized and analyzed for their sensitivity to the electrochemical environment using faradic electrochemical impedance spectroscopy (EIS) as the detection technique. Nanogap optimized IDEs were then employed as biosensors for the label-free, affinity-based detection of antitissue transglutaminase antibodies (αtTG-Abs), a biomarker for the detection of autoimmune disorder celiac sprue, triggered by ingesting gluten. The label-free biosensor assay was found to be less sensitive compared to on-chip ELISA. Gold nanoparticles (GNPs) were then employed to improve the sensitivity of the nanogap IDE-based biosensor. With GNPs, the transducer sensitivity increased by 350% over that of label-free detection. The suitability of nanogap IDEs as biosensor transducers for EIS in label-free and GNP-labeled formats was established. The immunobiosensor assay detection sensitivity with the GNPs was found comparable to ELISA.  相似文献   

2.
Microwire electrodes are presented as an alternative to screen-printed electrodes for detection in electrochemical paper-based analytical devices (ePADs). Compared to carbon ink electrodes, microwire electrodes offer lower resistance and a significant increase in current density relative to carbon ink electrodes. Various microwire compositions and diameters, including 30 μm Pt, 25 μm Au, 18 μm Pt with 8% W, and 15 μm Pt with 20% Ir, were tested and compared to theoretically predicted behavior. The measured current in static solution was below predicted levels for cylindrical microelectrodes but greater than levels predicted for hemi-cylindrical electrodes most likely as a result of the proximity of the electrode to the paper surface. Furthermore, the current response was indicative of semi-thin layer behavior, likely due to the confined solution volume in the paper. After electrode characterization, a device was developed for the non-enzymatic detection of glucose, fructose, and sucrose using a Cu electrode in alkaline solution. The limits of detection for glucose, fructose, and sucrose were 270 nM, 340 nM, and 430 nM, respectively, which are significantly below sugar concentrations found in sweetened beverages or glucose levels in serum.  相似文献   

3.
Microchannel devices were constructed from low-temperature co-fired ceramic (LTCC) materials with screen-printed gold (SPG) electrodes in three dimensions—on all four walls—for self-contained enzyme-linked immunosorbant assays with electrochemical detection. The microchannel confines the solution to a small volume, allowing concentration of electroactive enzymatically generated product and nearby electrodes provide high-speed and high-sensitivity detection: it also facilitates future integration with microfluidics. LTCC materials allow easy construction of three-dimensional structures compared with more traditional materials such as glass and polymer materials. Parallel processing of LTCC layers is more amenable to mass production and fast prototyping, compared with sequential processing for integrating multiple features into a single device. LTCC and SPG have not been reported previously as the basis for microchannel immunoassays, nor with integrated, individually addressable electrodes in three dimensions. A demonstration assay for mouse IgG at 5.0 ng/mL (3.3 × 10-11 M) with electrochemical detection was achieved within a 1.8 cm long × 290 μm high × 130 μm wide microchannel (approximately 680 nL). Two of four SPG electrodes span the top and bottom walls and serve as the auxiliary electrode and the assay site, respectively. The other two (0.7 cm long × 97 μm wide) are centered lengthwise on the sidewalls of the channel. One serves as the working and the other as the pseudoreference electrode. The immunoassay components were immobilized at the bottom SPG region. Enzymatically generated p-aminophenol was detected at the internal working electrode within 15 s of introducing the enzyme substrate p-aminophenyl phosphate. A series of buffer rinses avoided nonspecific adsorption and false-positive signals.  相似文献   

4.
A sulfite oxidase (SOx) purified from leaves of Syzygium cumini (Jamun) was immobilized covalently onto a gold nanoparticles (AuNPs)/chitosan (CHIT)/carboxylated multiwalled carbon nanotubes (cMWCNTs)/polyaniline (PANI) composite that was electrodeposited onto the surface of a gold (Au) electrode. A novel and highly sensitive sulfite biosensor was developed that used this enzyme electrode (SOx/AuNPs/CHIT/cMWCNT/PANI/Au) as the working electrode, Ag/AgCl as the standard electrode, and Pt wire as the auxiliary electrode. The modified electrode was characterized by Fourier transform infrared (FTIR) spectroscopy, cyclic voltammetry (CV), scanning electron microscopy (SEM), and electrochemical impedance spectroscopy (EIS) before and after the immobilization of the SOx. The sensor produced its optimum response within 3 s when operated at 50 mVs−1 in 0.1 M phosphate buffer, pH 7.0, and at 35 °C. The linear range and detection limit of the sensor were 0.75–400 μM and 0.5 μM (S/N = 3), respectively. The biosensor was employed to determine sulfite levels in fruit juices and alcoholic beverages. The enzyme electrode was used 300 times over a period of three months when stored at 4 °C.  相似文献   

5.
In this work, 3-aminopropyltriethoxysilane modified Fe3O4 nanoparticles (ATPS-Fe3O4) were used to modify glassy carbon electrode for aminopyrine determination. ATPS-Fe3O4 showed obviously catalytic activity and adsorptivity towards aminopyrine oxidation proven by the increased oxidation peak current and the decreased oxidation peak potential. The best analytical response was obtained by immobilizing 8 μL 3 mg/mL APTS-Fe3O4 dispersion with an accumulation time of 200 s at −0.2 V in 0.1 M phosphate buffer solution (pH 9.0). The oxidation peak current of aminopyrine showed linear relationship with its concentration in the range from 0.5 to 100 and 100 to 1600 μM. The detection limit was 0.1 μM (S/N = 3). The proposed method showed satisfactory repeatability and anti-interference ability. The fabricated electrode was successfully applied to determine aminopyrine in pharmaceutical formulations.  相似文献   

6.
Diabetes is a metabolic disease with a prolonged elevated level of glucose in the blood leads to long-term complications and increases the chances for cardiovascular diseases. The present study describes the fabrication of a ZnO nanowire (NW)-modified interdigitated electrode (IDE) to monitor the level of blood glucose. A silver IDE was generated by wet etching-assisted conventional lithography, with a gap between adjacent electrodes of 98.80 μm. The ZnO-based thin films and NWs were amended by sol–gel and hydrothermal routes. High-quality crystalline and c-axis orientated ZnO thin films were observed by XRD analyses. The ZnO thin film was annealed for 1, 3 and 5 h, yielding a good-quality crystallite with sizes of 50, 100 and 110 nm, and the band gaps were measured as 3.26, 3.20 and 3.17 eV, respectively. Furthermore, a flower-modeled NW was obtained with the lowest diameter of 21 nm. Our designed ZnO NW-modified IDE was shown to have a detection limit as low as 0.03 mg/dL (correlation coefficient = 0.98952) of glucose with a low response time of 3 s, perform better than commercial glucose meter, suitable to instantly monitor the glucose level of diabetes patients. This study demonstrated the high performance of NW-mediated IDEs for glucose sensing as alternative to current glucose sensors.  相似文献   

7.
Poly brilliant cresyl blue (PBCB) and poly 5-amino-2-napthalenesulfonic (PANS) polymer composite modified electrode was fabricated by the electrochemical polymerization of brilliant cresyl blue and 5-amino-2-napthalenesulfonic acid. When compared polymer composite electrodes with PBCB and PANS electrode, it showed enhanced electrochemical property. The morphology of the resulting composite electrode was characterized by AFM, and the electrochemical properties of the modified electrode were characterized by cyclic voltammetry and amperometry. The composite electrode showed surface-confined and pH-dependent electrochemical property. The composite electrode exhibited high catalytic behavior toward the reduction of hydrogen peroxide at low overpotential. The detection limit and sensitivity of the electrode toward H2O2 detection was 5 μM and 1 μA/mM, respectively, and response time was less than 10 s for hydrogen peroxide.  相似文献   

8.
A diffusion junction between two paired gold electrodes is created in a bipotentiostatic electro-deposition process. Gold metal is deposited simultaneously on two adjacent disc electrodes (100 μm diameter, approximately 125 μm separation) until short-circuit conditions trigger the end point of the electro-deposition. Symmetric gold junctions with typically 5 μm average inter-electrode gap size, 140 μm gap length, and approximately 18 μm junction depth are obtained. These paired gold electrodes are employed in generator–collector mode to give well-defined steady-state feedback currents even for extremely low concentrations of analyte (sub-μM) and without any contributions from capacitive charging. Four redox systems are investigated spanning a wide range of diffusion coefficients: (1) the one-electron oxidation of iodide to iodine, (2) the two-electron oxidation of hydroquinone to benzoquinone, (3) the two-electron reduction of alizarin red S, and (4) the one-electron oxidation of the redox protein cytochrome c. Consistent results for these redox systems suggest that (1) the junction zone between the two electrodes is dominating the behaviour of the electrode in particular for the slower diffusing systems and (2) the paired gold electrode junction can be calibrated and employed for electroanalysis at very low concentrations and for a wider range of analytically relevant redox systems. Dedicated to Professor Keith B. Oldham, on the occasion of his 80th birthday  相似文献   

9.
Preanodized screen printed carbon electrode (SPCE) has been utilized for the detection of propofol. Here the preanodized SPCE possess the specific functional groups which help the detection and determination of propofol. The proposed SPCE shows a clear oxidation peak for the detection of propofol in pH 7.0 phosphate buffer solutions. Interestingly, it shows a well-defined individual oxidation peak for the detection of propofol in the presence interferences (mixture of ascorbic acid, dopamine, and uric acid). This type of pretreated SPCE successfully enhances the electrooxidation current and overcomes the interference effects and clearly exhibits the signals for the propofol detection using cyclic voltammetry and flow injection analysis techniques. The preanodized SPCE shows the electrooxidation signals for the propofol detection in the linear range of 0.09 to 0.90 μM, respectively. Further, the sensitivity of the proposed electrode for the propofol detection is found to be 3.6 μA μM−1.  相似文献   

10.
This paper reports the selective determination of isoproterenol (IP) in the presence of uric acid (UA) and folic acid (FA) using 2,7-bis(ferrocenyl ethyl)fluoren-9-one modified carbon nanotube paste electrode (2,7-BFCNPE) in 0.1 M phosphate buffer solution (PBS) (pH 7.0). The bare carbon paste electrode does not separate the voltammetric signals of IP, UA, and FA. However, 2,7-BFCNPE not only resolved the voltammetric signals of IP, UA, and FA with potential differences of 150, 325, and 475 mV between IP–UA, UA–FA, and IP–FA, respectively, but also dramatically enhanced the oxidation peak currents of them when compared to bare carbon paste electrode. In PBS of pH 7.0, the oxidation current increased linearly with two concentration intervals of IP, one is 0.08 to 17.5 μM and the other is 17.50 to 700.0 μM. The detection limit (3σ) obtained by DPV was 26.0 ± 2 nM. The practical application of the modified electrode was demonstrated by determining IP in IP injection, urine, and human blood serum.  相似文献   

11.
The detection of explosives in seawater is of great interest. We compared response single-, few-, and multilayer graphene nanoribbons and graphite microparticle-based electrodes toward the electrochemical reduction of 2,4,6-trinitrotoluene (TNT). We optimized parameters such as accumulation time, accumulation potential, and pH. We found that few-layer graphene exhibits about 20% enhanced signal for TNT after accumulation when compared to multilayer graphene nanoribbons. However, graphite microparticle-modified electrode provides higher sensitivity, and there was no significant difference in the performance of single-, few-, and multilayer graphene nanoribbons and graphite microparticles for the electrochemical detection of TNT. We established the limit of detection of TNT in untreated seawater at 1 μg/mL.  相似文献   

12.
Cyclic voltammetry, chronoamperometry, and rotating disk electrode voltammetry were used to investigate the electrochemical behavior of thiobencarb (TB) at carbon paste electrode modified with an azo dye, 2-(4-((4-ethoxyphenyl)diazenyl)phenylamino)ethanol (EDPE), EDPE/modified carbon paste electrode (MCPE). The modified electrode showed high electrocatalytic activity toward thiobencarb. The current was enhanced significantly relative to the situation prevailing when a bare glassy carbon electrode was used. The kinetics parameters of this process were calculated, the apparent electron transfer rate constant k s and α (charge transfer coefficient between electrode and EDPE) were 14.6 s−1 and 0.48, respectively. The experimental parameters were optimized, and the mechanism of the catalytic process was discussed. The best defined cathodic peak was obtained with 0.1 M acetate buffer (pH 3.0). The response of the sensor was very quick, and response time was approximately 5 s. The differential pulse voltammetry response of the MCPE was linear against the concentration of TB in the range of 0.96 to 106 μg L−1. The limit of detection was found to be 0.025 μg L−1. The precision was examined by carrying out eight replicate measurements at a concentration of 25 μg L−1 TB; the relative standard deviation was 2.9%.  相似文献   

13.
《Analytical letters》2012,45(10):1230-1241
In this study, anti-carbofuran monoclonal antibodies (Ab) were immobilized onto a gold electrode surface modified with multilayers of L-cysteine and gold colloidal nanoparticles (GNPs). Furthermore, horseradish peroxidase (HRP) as enzyme membrane was used for blocking unspecific sites and amplifying signal. The conformational properties of the immunosensor were characterized using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The concentration of antibody solution, pH of working buffer and incubation time were studied in detail for optimization of analytical performance. Under optimal conditions, the variation of current response was proportional to the concentration of carbofuran which ranged from 0.01 ng/mL to 50 ng/mL with a correlation coefficient of 0.9912. The detection limit was 0.01 ng/mL (S/N = 3). The proposed immunosensor exhibited good reproducibility and stability and it can be used for the rapid detection of carbofuran pesticide.  相似文献   

14.
In this work, ConA and CramoLL lectins were immobilized on gold nanoparticles (AuNp) with polyvinyl butyral (PVB), and adsorbed on the surface of gold (Au) electrodes. Electrochemical impedance spectroscopy (EIS), in the frequency range from 100mHz to 100KHz, and cyclic voltammetry (CV), from -0.2 to 0.7V, were performed on these electrodes, in phosphate buffer (PBS) solution containing 10mM K(3)[Fe(CN)(6)]/K(4)[Fe(CN)(6)] (1:1) mixture as a redox probe. EIS and CV measurements showed that redox probe reactions on the modified Au electrodes were partially blocked due to the adsorption of AuNp-ConA-PVB and AuNp-CramoLL-PVB. SEM images showed the presence of aggregates of AuNp-ConA on PVB spherules in a tridimensional structure on the surface of the Au electrode. Bovine serum albumin (BSA) was adsorbed on the AuNp-Lectin-PVB modified electrode in order to block the remaining free gold sites. Both EIS and CV techniques yielded results that confirm positive responses of the lectins to ovalbumin agglutination. These results indicate an improvement of the sensitivity for detection of sugars that can be applicable to construction of a biosensor sensitive to glycoproteins in solution.  相似文献   

15.
Screening of Prostate-specific antigen (PSA) in human blood is the most common approach to diagnose prostate cancer. The joint application of biology and electrochemistry has shown a tremendous rise in research towards the development of electrochemical diagnostic tools for various diseases. The present study demonstrates the development of an effective immunosensing platform incorporating hydroquinone (HQ) immobilized, fullerene-C60 and copper nanoparticles (CuNPs) composite film on glassy carbon electrode (HQ@CuNPs-reduced-fullerene-C60/GCE) for the selective, quick and trace detection of PSA. In order to fabricate immunosensor sequential immobilization of primary antibody (Ab1), blocking agent (bovine serum albumin (BSA)), antigen (prostate-specific antigen (PSA)) and secondary antibody (Ab2) tagged with horseradish peroxide (HRP) was carried out on HQ@CuNPs-reduced-fullerene-C60/GCE. Electrochemical characterization and the signal response of immunosensor were tested using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Due to the synergetic effect of fullerene-C60 and CuNPs, the novel nanocomposite film exhibited excellent catalytic activity towards hydrogen peroxide (H2O2) reduction for greatly amplified immunosensing signals. HQ@CuNPs-fullerene-C60/GCE exhibited a well-defined redox peak and accelerated electrochemical reduction of H2O2 without any interference of dissolved oxygen and false-positive result in phosphate buffer solution (PBS) at pH 7.0. The parameters influencing the electrochemical response were optimized. Under the optimized conditions, wide linearity between PSA concentrations and current responses ranging from 0.005 ng/mL to 20 ng/mL with the lower detection limit of 0.002 ng/mL was obtained at the proposed immunosensor. The clinical applicability of the proposed immunosensor was successfully tested in serum and urine samples. Results revealed that the proposed immunosensor may create new boundaries in the identification of PSA in human blood samples.  相似文献   

16.
In this work, an electrochemical sensor 1-phenyl-3-methyl-4-(2-furoyl)-5-pyrazolone/multiwalled carbon nanotubes/glassy carbon electrode (GCE) was prepared for the determination of xanthine (XN) in the presence of an excess of uric acid. Cyclic voltammetry and differential pulse voltammetry were used to characterize the electrode. The oxidation of XN occurred in a well-defined peak having E p 0.73 V in phosphate buffer solution of pH 6.0. Compared with the bare GCE, the electrochemical sensor greatly enhanced the oxidation signal of XN with negative shift in peak potential about 110 mV. Based on this, a sensitive, rapid, and convenient electrochemical method for the determination of XN has been proposed. Under the optimized conditions, the oxidation peak current of XN was found to be proportional to its concentration in the range of 0.3~50 μM with a detection limit of 0.08 μM. The analytical utility of the proposed method was demonstrated by the direct assay of XN in urine samples and was found to be promising at our preliminary experiments.  相似文献   

17.
A glassy carbon electrode modified with poly(3,4-ethylenedioxypyrrole-2,5-dicarboxylic acid) nanofibers (PEDOPA-NFs) was prepared for the determination of norepinephrine (NE) in phosphate buffer saline. The modified electrode demonstrated an improved sensitivity and selectivity toward the electrochemical detection of NE and could detect separately ascorbic acid (AA), uric acid (UA), and NE in their mixture. The separations of the oxidation peak potentials of NE–AA and NE–UA were 160 and 150 mV, respectively. Meanwhile, the modified electrode showed higher sensitivity and selectivity toward NE than dopamine and epinephrine. Using differential pulse voltammetry, the oxidation peak current of NE was found to be linearly dependent on its concentration within the range of 0.3–10 μM, and the detection limit of the NE oxidation current was 0.05 μM at a signal-to-noise ratio of 3. The PEDOPA-NFs promoted the electron transfer reaction of NE, while the PEDOPA-NFs, acting as a negatively charged linker, combined with the positively charged NE to induce NE accumulation in the NFs at pH under 7.4. However, the PEDOPA-NFs restrained the electrochemical response of the negatively charged AA and UA due to the electrostatic repulsion. The result indicates that the modified electrode can be used to determine NE without interference from AA and UA and selectively in the mixture of catecholamines.  相似文献   

18.
The detection of α‐methylacyl‐CoA racemase (AMACR), a novel biomarker for prostate cancer, is demonstrated in serum and urine using a novel immuno‐detection method. The detection system consists of a three‐electrode conventional electrochemical cell modified with a gating electrode for applying a gating voltage VG to the immune complex immobilized on the working electrode to provide signal amplification. The detection system is realized by integrating gating electrodes with screen‐printed electrodes. This detection method does not require involved sample preparation procedures. The detection was demonstrated in serum and urine samples on the nanogram/mL level with VG equal to 0.6 V. Detection in serum was also performed on the picogram/mL level with a limit of 100 picogram/mL with VG=0.6 V being a necessary condition.  相似文献   

19.
Screen-printed carbon electrodes were fabricated with amino acid functionality by using in situ co-deposition of mercury and cysteine. The three-electrode configuration (graphite carbon working electrode, carbon counter electrode and silver/silver chloride reference electrode) incorporating a cysteine-modified working electrode exhibited good sensitivity towards cadmium(II). Several experimental variables affecting the sensor stripping response were characterised and optimised. These include cysteine and mercury concentrations, deposition time, deposition potential and stripping current. Surface analysis was also conducted using scanning electron microscopy (SEM) in order to characterize the electrode surface during cadmium analysis. The stripping chronopotentiometric response for cadmium(II) was linear in the concentration range 0.4–800 g L–1 when a deposition time of 2 min was used. A detection limit of 0.4 g L–1 was obtained using 0.025 M Tris–HCl buffer containing 0.1 M KCl (pH 7.4) as the supporting electrolyte. The analytical utility of the cysteine-modified sensor was demonstrated by applying it to cadmium analysis in various wastewater and soil samples collected from a contaminated site and extracted using acetic acid. The results obtained using the developed electrodes agreed satisfactorily with the values achieved using atomic absorption spectrometry and inductively coupled plasma mass spectrometry analysis. These results demonstrate the feasibility of using this type of sensor for cadmium analysis.  相似文献   

20.
The electrochemical behaviour of glassy carbon electrodes coated with multiwalled carbon nanotubes (MWCNT) from three different sources and with different loadings has been compared, with a view to sensor applications. Additionally, poly(neutral red) (PNR) was electrosynthesised by potential cycling on bare glassy carbon and on MWCNT-modified glassy carbon electrodes, and characterised by cyclic voltammetry and scanning electron microscopy. Well-defined voltammetric responses were observed for hexacyanoferrate (II) oxidation with differences between the MWCNT types as well as from loading. The MWCNT and PNR/MWCNT-modified electrodes were applied to the oxidative determination of ascorbate, the electrocatalytic effects observed varying according to the type of nanotubes. Comparison was made with electrodes surface-modified by graphite powder. All modified electrode configurations with and without PNR were successfully employed for ascorbate oxidation at +0.05 V vs saturated calomel electrode with detection limits down to 4 μM; good operational stability and storage stability were also obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号