首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Diruthenium azido complexes Ru(2)(DPhF)(4)N(3) (1a, DPhF = N,N'-diphenylformamidinate) and Ru(2)(D(3,5-Cl(2))PhF)(4)N(3) (1b, D(3,5-Cl(2))PhF = N,N'-bis(3,5-dichlorophenyl)formamidinate) have been investigated by thermolytic and photolytic experiments to investigate the chemical reactivity of the corresponding diruthenium nitride species. Thermolysis of 1b at ~100 °C leads to the expulsion of N(2) and isolation of Ru(2)(D(3,5-Cl(2))PhF)(3)NH(C(13)H(6)N(2)Cl(4)) (3b), in which a nitrogen atom has been inserted into one of the proximal aryl C-H bonds of a D(3,5-Cl(2))PhF ligand. A similar C-H insertion product is obtained upon thawing a frozen CH(2)Cl(2) solution of the nitride complex Ru(2)(DPhF)(4)N (2a), formed via photolysis at -196 °C of 1a to yield Ru(2)(DPhF)(3)NH(C(13)H(10)N(2)) (3a). Evidence is provided here that both reactions proceed via direct intramolecular attack of an electrophilic terminal nitrido nitrogen atom on a proximal aryl ring. Thermodynamic and kinetic data for this reaction are obtained from differential scanning calorimetric measurements and thermal gravimetric analysis of the thermolysis of Ru(2)(D(3,5-Cl(2))PhF)(4)N(3), and by Arrhenius/Eyring analysis of the conversion of Ru(2)(DPhF)(4)N to its C-H insertion product, respectively. These data are used to develop a detailed, experimentally validated DFT reaction pathway for N(2) extrusion and C-H functionalization from Ru(2)(D(3,5-Cl(2))PhF)(4)N(3). The diruthenium nitrido complex is an intermediate in the calculated reaction pathway, and the C-H functionalization event shares a close resemblance to a classical electrophilic aromatic substitution mechanism.  相似文献   

2.
Previously, the synthesis of compounds Ru(2)(D(3,5-Cl(2)Ph)F)(4-n)(O(2)CFc)(n)Cl (n = 1, 3a; 2, 4a), where D(3,5-Cl(2)Ph)F is N,N'-di(3,5-dichlorophenyl)formamidinate, from the carboxylate exchange reactions between Ru(2)(D(3,5-Cl(2)Ph)F)(4-n)(OAc)(n)Cl and ferrocene carboxylic acid was communicated. Reported herein is the preparation of analogous compounds Ru(2)(DmAniF)(4-n)(O(2)CFc)(n)Cl (n = 1, 3b; 2, 4b), where DmAniF is N,N'-di(3-methoxyphenyl)formamidinate, from Ru(2)(DmAniF)(4-n)(OAc)(n)Cl. Compounds 3 and 4 were characterized with various techniques including X-ray structural determinations of 3a and 4a. Voltammetric behaviors of compounds 3 and 4 were investigated, and stepwise one-electron ferrocene oxidations were observed for both compounds 4a and 4b. Spectral analysis of the monocations [4](+) indicated that they are the Robin-Day class II mixed valent [Fc···Fc](+) species. Measurement and fitting of magnetic data (χT) of 4a between 2 and 300 K revealed a typical zero-field splitting of a S = 3/2 center with D = 77 cm(-1), while those of [4a]BF(4) are consistent with the presence of S = 3/2 (Ru(2)) and S = 1/2 (Fc(+)) centers that are weakly coupled (zJ = -0.76 cm(-1)).  相似文献   

3.
The diruthenium compound trans-Ru(2)(DMBA)(4)(C≡C-C(6)H(4)-4-CHO)(2) (1; DMBA is N,N'-dimethylbenzamidinate) was prepared from the reaction between Ru(2)(DMBA)(4)(NO(3))(2) and HC≡C-C(6)H(4)-4-CHO under the weak base conditions. The aldehyde groups of 1 undergo a condensation reaction with NH(2)C(6)H(4)-4-Y (Y = H and NH(2)) to afford new compounds trans-Ru(2)(DMBA)(4)(C≡C-C(6)H(4)-4-CH═N-C(6)H(4)-4'-Y)(2) (Y = H (2) and NH(2) (3)). A related compound, Ru(2)(DMBA)(4)(C≡C-C(6)H(4)-4-N═C(Me)Fc)(2) (4), was also prepared from the reaction between Ru(2)(DMBA)(4)(NO(3))(2) and HC≡C-C(6)H(4)-N═C(Me)Fc. X-ray structural studies of compounds 1 and 2 revealed significant deviation from an idealized D(4h) geometry in the coordination sphere of the Ru(2) core. Voltammetric measurements revealed four one electron redox processes for compounds 1-3: the Ru(2) centered oxidation and reduction, and a pair of reductions of the imine or aldehyde groups. Compound 4 displays an additional oxidation attributed to the Fc groups. DFT calculations were performed on model compounds to gain a more thorough understanding of the interaction of the organic functional groups across the diruthenium bridge.  相似文献   

4.
Gao LB  Kan J  Fan Y  Zhang LY  Liu SH  Chen ZN 《Inorganic chemistry》2007,46(14):5651-5664
Preparation and characterization of a series of rodlike binuclear ruthenium polyynediyl complexes capped with redox-active organometallic fragments [(bph)(PPh3)2Ru]+ (bph=N-(benzoyl)-N'-(picolinylidene)-hydrazine) or [(Phtpy)(PPh3)2Ru]2+ (Phtpy=4'-phenyl-2,2':6',2' '-terpyridine) have been carried out. The length of the molecular rods is extended by successive insertion of 2,5-thiophene or 1,4-phenylene spacers in the bridging ligands. Oxidation of thiophene-containing Ru2II,II complexes induces isolation of stable Ru2II,III or Ru2III,III species. Electrochemical and UV-vis-NIR spectral studies demonstrate that the polyynediyl bridges with 2,5-thiophene units are more favorable for metal-metal charge transfer compared with those containing the same number of 1,4-phenylene units. Successive increase of thiophene spacers in mixed-valence complexes {RuII}-CC(C4H2S)mCC-{RuIII} (m=1, 2, 3) induced a smooth transition from almost electronic delocalization (m=1) to localization (m=3). For binuclear ruthenium complexes with intramolecular electron transfer transmitted across nine Ru-C and C-C bonds, electronic conveying capability follows {Ru}-CC(CC)2CC-{Ru}>{Ru}-CC(C4H2S)CC-{Ru}>{Ru}-CC(C6H4)CC-{Ru}>{Ru}-CC(CH=CH)2CC-{Ru}. It is revealed that molecular wires capped with electron-rich (bph)(PPh3)2Ru endgroups are much more favorable for electronic communication than the corresponding electron-deficient (Phtpy)(PPh3)2Ru-containing counterparts. The intermetallic electronic communication is fine-tuned by modification of both the bridging spacers and the ancillary ligands.  相似文献   

5.
The Ru(II) amido complex (PCP)Ru(CO)(PMe(3))(NHPh) (1) (PCP = 2,6-(CH(2)P(t)Bu(2))(2)C(6)H(3)) reacts with compounds that possess polar C=N, C triple bond N, or C=O bonds (e.g., nitriles, carbodiimides, or isocyanates) to produce four-membered heterometallacycles that result from nucleophilic addition of the amido nitrogen to an unsaturated carbon of the organic substrate. Based on studies of the reaction of complex 1 with acetonitrile, the transformations are suggested to proceed by dissociation of trimethylphosphine, followed by coordination of the organic substrate and then intramolecular N-C bond formation. In the presence of ROH (R = H or Me), the fluorinated amidinate complex (PCP)Ru(CO)(N(Ph)C(C(6)F(5))NH) (6) reacts with excess pentafluorobenzonitrile to produce (PCP)Ru(CO)(F)(N(H)C(C(6)F(5))NHPh) (7). The reaction with MeOH also produces o-MeOC(6)F(4)CN (>90%) and p-MeOC(6)F(4)CN (<10%). Details of the solid-state structures of (PCP)Ru(CO)(F)(N(H)C(C(6)F(5))NHPh) (7), (PCP)Ru(CO)[PhNC{NH(hx)}N(hx)] (8), (PCP)Ru(CO){N(Ph)C(NHPh)O} (9), and (PCP)Ru(CO){OC(Ph)N(Ph)} (10) are reported.  相似文献   

6.
The series of ferrocene-containing tris-β-diketonato aluminum(III) complexes [Al(FcCOCHCOR)(3)] (R = CF(3), 1; CH(3), 2; C(6)H(5), 3; and Fc = ferrocenyl = Fe(η(5)-C(5)H(5))(η(5)-C(5)H(4)), 4) were synthesized and investigated structurally and electrochemically; complex 1 was subjected to cytotoxicity tests. (1)H NMR-spectroscopy distinguished between the mer and fac isomers of 2 and 3. Complex 1 existed only as the mer isomer. A single crystal X-ray crystallographic determination of the structure of a mer-isomer of Al(FcCOCHCOCF(3))(3), 1, (Z = 4, space group P2(1)2(1)2(1)) demonstrated extensive delocalization of all bonds which explained the pronounced electrochemically observed intramolecular communication between molecular fragments. In contrast to electrochemical studies in CH(2)Cl(2)/[N((n)Bu)(4)][PF(6)], the use of the supporting electrolyte [N((n)Bu)(4)][B(C(6)F(5))(4)] allowed identification of all Fc/Fc(+) electrochemical couples by cyclic and square wave voltammetry for 1-4. For R = Fc, formal reduction potentials of the six ferrocenyl groups were found to be E°' = 33, 123, 304, 432, 583, and 741 mV versus free ferrocene respectively. Complex 1 (IC(50) = 10.6 μmol dm(-3)) was less cytotoxic than the free FcCOCH(2)COCF(3) ligand having IC(50) = 6.8 μmol dm(-3) and approximately 2 orders of magnitude less toxic to human HeLa neoplastic cells than cisplatin (IC(50) = 0.19 μmol dm(-3)).  相似文献   

7.
The synthesis and spectroscopic properties of trans-[RuL4(C[triple bond]CAr)2] (L4 = two 1,2-bis(dimethylphosphino)ethane, (dmpe)2; 1,5,9,13-tetramethyl-1,5,9,13-tetraazacyclohexadecane, 16-TMC; 1,12-dimethyl-3,4:9,10-dibenzo-1,12-diaza-5,8-dioxacyclopentadecane, N2O2) are described. Investigations into the effects of varying the [RuL4] core, acetylide ligands, and acetylide chain length for the [(-)C[triple bond]C(C6H4C[triple bond]C)(n-1)Ph] and [(-)C[triple bond]C(C6H4)(n-1)Ph] (n = 1-3) series upon the electronic and electrochemical characteristics of trans-[RuL4(C[triple bond]CAr)2](0/+) are presented. DFT and TD-DFT calculations have been performed on trans-[Ru(L')4(C[triple bond]CAr)2](0/+) (L' = PH3 and NH3) to examine the metal-acetylide pi-interaction and the nature of the associated electronic transition(s). It was observed that (1) the relationship between the transition energy and 1/n for trans-[Ru(dmpe)2{C[triple bond]C(C6H4C[triple bond]C)(n-1)Ph}2] (n = 1-3) is linear, and (2) the sum of the d(pi)(Ru(II)) --> pi*(C[triple bond]CAr) MLCT energy for trans-[Ru(16-TMC or N2O2)(C[triple bond]CAr)2] and the pi(C[triple bond]CAr) --> d(pi)(Ru(III)) LMCT energy for trans-[Ru(16-TMC or N2O2)(C[triple bond]CAr)2]+ corresponds to the intraligand pi pi* absorption energy for trans-[Ru(16-TMC or N2O2)(C[triple bond]CAr)2]. The crystal structure of trans-[Ru(dmpe)2{C[triple bond]C(C6H4C[triple bond]C)2Ph}2] shows that the two edges of the molecule are separated by 41.7 A. The electrochemical and spectroscopic properties of these complexes can be systematically tuned by modifying L4 and Ar to give E(1/2) values for oxidation of trans-[RuL4(C[triple bond]CAr)2] that span over 870 mV and lambda(max) values of trans-[RuL4(C[triple bond]CAr)2] that range from 19,230 to 31,750 cm(-1). The overall experimental findings suggest that the pi-back-bonding interaction in trans-[RuL4(C[triple bond]CAr)2] is weak and the [RuL4] moiety in these molecules may be considered to be playing a "dopant" role in a linear rigid pi-conjugated rod.  相似文献   

8.
Dimers of [Ru(2)(Xap)(4)] bridged by 1,3,5-hexatriyn-diyl (Xap are 2-anilinopyridinate and its aniline substituted derivatives), [Ru(2)(Xap)(4)](2)(μ-C(6)) (1), were prepared. Compounds 1 reacted with 1 equiv of tetracyanoethene (TCNE) to yield the cyclo-addition/insertion products [Ru(2)(Xap)(4)](2){μ-C≡CC(C(CN)(2))-C(C(CN)(2))C≡C} (2) and 1 equiv of Co(2)(dppm)(CO)(6) to yield the η(2)-Co(2) adducts to the middle C≡C bond, [Ru(2)(Xap)(4)](2)(μ-C(6))(Co(2)(dppm)(CO)(4)) (3). Voltammetric and spectroelectrochemical studies revealed that (i) two Ru(2) termini in 1 are sufficiently coupled with the monoanion (1(-)) as a Robin-Day class II/III mixed valence species; (ii) the coupling between two Ru(2) is still significant but somewhat weakened in 3; and (iii) the coupling between two Ru(2) is completely removed by the insertion of TCNE in 2. The attenuation of electronic couplings in 2 and 3 was further explored with both the X-ray diffraction study of representative compounds and spin-unrestricted DFT calculations.  相似文献   

9.
A series of pyridine- and phenol-based ruthenium(II)-containing amphiphiles with bidentate ligands of the following types are reported: [(L(PyI))Ru(II)(bpy)(2)](PF(6))(2) (1), [(L(PyA))Ru(II)(bpy)(2)](PF(6))(2) (2), [(L(PhBuI))Ru(II)(bpy)(2)](PF(6)) (3), and [(L(PhClI))Ru(II)(bpy)(2)](PF(6)) (4). Species 1 and 2 are obtained by treatment of [Ru(bpy)(2)Cl(2)] with the ligands L(PyI) (N-(pyridine-2-ylmethylene)octadecan-1-amine) and L(PyA) (N-(pyridine-2-ylmethyl)octadecan-1-amine). The imine species 3 and 4 are synthesized by reaction of [Ru(bpy)(2)(CF(3)SO(3))(2)] with the amine ligands HL(PhBuA) (2,4-di-tert-butyl-6-((octadecylamino)methyl)phenol), and HL(PhClA) (2,4-dichloro-6-((octadecylamino)methyl)phenol). Compounds 1-4 are characterized by means of electrospray ionization (ESI(+)) mass spectrometry, elemental analyses, as well as electrochemical methods, infrared and UV-visible absorption and emission spectroscopies. The cyclic voltammograms (CVs) of 1-2 are marked by two successive processes around -1.78 and -2.27 V versus Fc(+)/Fc attributed to bipyridine reduction. A further ligand-centered reductive process is seen for 1. The Ru(II)/Ru(III) couple appears at 0.93 V versus Fc(+)/Fc. The phenolato-containing 3 and 4 species present relatively lower reduction potentials and more reversible redox behavior, along with Ru(II/III) and phenolate/phenoxyl oxidations. The interpretation of observed redox behavior is supported by density functional theory (DFT) calculations. Complexes 1-4 are surface-active as characterized by compression isotherms and Brewster angle microscopy. Species 1 and 2 show collapse pressures of about 29-32 mN·m(-1), and are strong candidates for the formation of redox-responsive monolayer films.  相似文献   

10.
Reported in this contribution are the preparation and characterization of a series of Ru(2)(DMBA)(4) (DMBA = N,N'-dimethylbenzamidinate) bis(alkynyl) compounds, trans-Ru(2)(DMBA)(4)(X-gem-DEE)(2) [gem-DEE = σ-geminal-diethynylethene; X = H (1), Si(i)Pr(3) (2), Fc (3); 4-C(6)H(4)NO(2) (4), and 4-C(6)H(4)NMe(2) (5)]. Compounds 1-5 were characterized by spectroscopic and voltammetric techniques as well as the single-crystal X-ray diffraction studies of 2 and 3. Both the single-crystal structural data of compounds 2 and 3 and the spectroscopic/voltammetric data indicate that the gem-DEE ligands are similar to simple acetylides in their impact on the molecular and electronic structures of the Ru(2)(DMBA)(4) core. Furthermore, density functional theory calculations revealed more extensive π delocalization in aryl-donor-substituted gem-DEEs and that the hole-transfer mechanism will likely dominate the charge delocalization in Ru(2)-gem-DEE-based wires.  相似文献   

11.
Fullerene coordination ligands bearing one bipyridine or terpyridine unit were synthesized, and their coordination to ruthenium(II) formed linear rod-like donor-acceptor systems. Steady-state fluorescence of [Ru(bpy)(2)(bpy-C(60))](2+) showed a rapid solvent-dependent, intramolecular quenching of the ruthenium(II) MLCT excited state. Time-resolved flash photolysis in CH(3)CN revealed characteristic transient absorption changes that have been ascribed to the formation of the C(60) triplet state, suggesting that photoexcitation of [Ru(bpy)(2)(bpy-C(60))](2+) results in a rapid intramolecular transduction of triplet excited state energy. The electrochemical studies on both [Ru(bpy)(2)(bpy-C(60))](2+) and [Ru(tpy)(tpy-C(60))](2+) indicated electronic coupling between the metal center and the fullerene core.  相似文献   

12.
A series of dendronized-Ru(2) compounds were prepared using the Cu(I)-catalyzed 1,3-dipolar cycloaddition (click reaction) between the terminal azides of azidopoly(benzyl ether) dendrons ([D(n)]-N(3), n = 0-3) and Ru(2) units bearing one or two terminal ethynes, Ru(2)(D(3,5-Cl(2)Ph)F)(4-m)(DMBA-4-C(2)H)(m)Cl with m = 1 and 2, and D(3,5-Cl(2)Ph)F and DMBA-4-C(2)H as N,N'-bis(3,5-dichloro-phenyl)formamidinate and N,N'-dimethyl-4-ethynylbenzamidinate, respectively. The resultant Ru(2)(D(3,5-Cl(2)Ph)F)(4-m)(DMBA-D(n))(m)Cl compounds were further functionalized by the axial ligand displacement of Cl by -C(2)Ph to yield new compounds Ru(2)(D(3,5-Cl(2)Ph)F)(4-m)(DMBA-D(n))(m)(C(2)Ph)(2) (where m = 1 and 2; n = 0 and 1). All Ru(2) compounds reported herein were analyzed via mass spectrometry, voltammetry, and UV-visible and fluorescence spectroscopy. Density-functional theory (DFT) calculations were performed on a model compound to gain more insight into the molecular orbital energy levels possibly associated with the photophysical data obtained and presented herein.  相似文献   

13.
The reaction between [Ru(salen)(PPh3)Cl] and the 4-pyridyl-substituted nitronyl nitroxide radical (NITpPy) leads to the [Ru(salen)(PPh3)(NITpPy)](ClO4)(H2O)2 complex while the reaction with the azido anion (N3-) leads to the [Ru(salen)(PPh3)(N3)] complex 2 (where salen2- = N,N'-ethan-1,2-diylbis(salicylidenamine) and PPh3 = triphenylphosphine). Both compounds have been characterized by single crystal X-ray diffraction. The two crystal structures are composed by a [Ru(III)(salen)(PPh3)]+ unit where the Ru(III) ion is coordinated to a salen2- ligand and one PPh3 ligand in axial position. In 1 the Ru(III) ion is coordinated to the 4-pyridyl-substituted nitronyl nitroxide radical whereas in 2 the second axial position is occupied by the azido ligand. In both complexes the Ru(III) ions are in the same environment RuO2N3P, in a tetragonally elongated octhaedral geometry. The crystal packing of 1 reveals pi-stacking in pairs. While antiferromagnetic intermolecular interaction (J2 = 5.0 cm(-1)) dominates at low temperatures, ferromagnetic intramolecular interaction (J1 = -9.0 cm(-1)) have been found between the Ru(III) ion and the coordinated NITpPy.  相似文献   

14.
Liu B  Yin P  Yi XY  Gao S  Zheng LM 《Inorganic chemistry》2006,45(10):4205-4213
In the presence of organic templates, six diruthenium diphosphonates, namely, [H3N(CH2)3NH3]2[Ru2(hedp)2] (1), [H3N(CH2)4NH3]2[Ru2(hedp)2].4H2O (2), [H3N(CH2)5NH3]2[Ru2(hedp)2].4H2O (3), [H3N(CH2)3NH3][Ru2(hedp)(hedpH)].H2O (4), [H3N(CH2)4NH3][Ru2(hedpH(0.5))2].2H2O (5), and [H3N(CH2)5NH3]2[Ru2(hedp)2][Ru2(hedpH)2]] (6) [hedp = 1-hydroxyethylidenediphosphonate, CH3C(OH)(PO3)2] have been synthesized under hydrothermal conditions. Compounds 1-3 contain homovalent paddlewheel cores of Ru2(II,II)(hedp)2(4-) that are connected through edge-sharing of the [RuO5Ru] octahedra, resulting in infinite linear chains. Compounds 4-6 contain mixed-valent diruthenium(II,III) phosphonate paddlewheel cores of Ru2(II,III)(hedpH(n))2(3-2n)- that are connected by phosphonate oxygen atoms, forming distorted square-grid layers in 4 and 6 or a kagomé lattice in 5. Both the templates and the pH values are found to play important roles in directing the final products with particular topologies and oxidation states of the diruthenium unit. The magnetic studies show that weak antiferromagentic interactions are propagated between the homovalent diruthenium units in compounds 1-3. For compounds 4-6, weak ferromagnetic interactions are observed.  相似文献   

15.
16.
Chen WZ  Ren T 《Inorganic chemistry》2006,45(20):8156-8164
A high-yield synthesis of mixed-bridging-ligand Ru2 compounds, Ru2(D(3,5-Cl2Ph)F)(4-n)(OAc)nCl [n = 1 (1) and 2 (2)] was developed, where D(3,5-Cl2Ph)F is bis(3,5-dichlorophenyl)formamidinate. The acetate ligands in 1 and 2 can be quantitatively displaced with DMBA-I to yield Ru2(D(3,5-Cl2Ph)F)3(DMBA-I)Cl (3) and Ru2(D(3,5-Cl2Ph)F)2(DMBA-I)2Cl (4), respectively, where DMBA-I is N,N'-dimethyl-4-iodobenzamidinate. When compound 2 was treated with 1 equiv of HDMBA-I, a unique Ru2 compound containing three different types of bidentate bridging ligands, cis-Ru2(D(3,5-Cl2Ph)F)2(DMBA-I)(OAc)Cl (5), was obtained. Subsequent reactions between 3/4 and (trimethylsilyl)acetylene under Sonogashira coupling conditions resulted in Ru2(D(3,5-Cl2Ph)F)(4-n)(DMBA-C[triple bond]CSiMe3)nCl [n = 1 (6) and 2 (8)] in excellent yields, which were converted to the corresponding bis(phenylacetylide) compounds Ru2(D(3,5-Cl2Ph)F)(4-n)(DMBA-C[triple bond]CSiMe3)n(C[triple bond]CPh)2 [n = 1 (7) and 2 (9)]. Structural studies of several compounds provided insights about the change in Ru2 coordination geometry upon the displacement of bridging and axial ligands. Voltammetric studies of these compounds revealed rich redox characteristics in all Ru2 compounds reported and a minimal electronic perturbation upon the peripheral Sonogashira modification.  相似文献   

17.
Tris(2-pyridylmethyl)amine (TPA) derivatives with one or two ferrocenoylamide moieties at the 6-position of one or two pyridine rings of TPA were synthesized. The compounds, N-(6-ferrocenoylamide-2-pyridylmethyl)-N,N-bis(2-pyridylmethyl)amine (Fc-TPA; L1) and N,N-bis(6-ferrocenoylamide-2-pyridylmethyl)-N-(2-pyridylmethyl)amine (Fc2-TPA; L2), were characterized by spectroscopic methods, cyclic voltammetry, and X-ray crystallography. Their Ru(II) complexes were also prepared and characterized by spectroscopic methods, cyclic voltammetry, and X-ray crystallography. [RuCl(L1)(DMSO)]PF(6) (1) that contains S-bound dimethyl sulfoxide (DMSO) as a ligand and an uncoordinated ferrocenoylamide moiety exhibited two redox waves at 0.23 and 0.77 V (vs ferrocene/ferrocenium ion as 0 V), due to Fc/Fc(+) and Ru(II)/Ru(III) redox couples, respectively. [RuCl(L2)]PF(6) (2) that contains both coordinated and uncoordinated amide moieties showed two redox waves that were observed at 0.27 V (two electrons) and 0.46 V (one electron), assignable to Ru(II)/Ru(III) redox couples overlapped with the uncoordinated Fc/Fc(+) redox couple and the coordinated Fc/Fc(+), respectively. In contrast to 2, an acetonitrile complex, [Ru(L2)(CH(3)CN)](PF(6))(2) (3), exhibited three redox couples at 0.26 and 0.37 V for two kinds of Fc/Fc(+) couples, and 0.83 V for the Ru(II)/Ru(III) couple (vs ferrocene/ferrocenium ion as 0 V). In this complex, the redox potentials of the coordinated and the uncoordinated Fc-amide moieties were discriminated in the range of 0.11 V. Chemical two-electron oxidation of 1 gave [RuIIICl(L1+)(DMSO)](3+) to generate a ferromagnetically coupled triplet state (S = 1) with J = 13.7 cm-1 (H = -JS(1)S(2)) which was estimated by its variable-temperature electron spin resonance (ESR) spectra in CH(3)CN. The electron spins at the Ru(III) center and the Fe(III) center are ferromagnetically coupled via an amide linkage. In the case of 2, its two-electron oxidation gave the same ESR spectrum, which indicates formation of a similar triplet state. Such electronic communication may occur via the amide linkage forming the intramolecular hydrogen bonding.  相似文献   

18.
Transient spectral hole-burning (THB), a powerful technique for probing the electronic structures of coordination compounds, is applied to the lowest excited 3MLCT states of specifically deuterated [Ru(bpy)3]2+ complexes doped into crystals of racemic [Zn(bpy)3](ClO4)2. Results are consistent with and complementary to conclusions reached from excitation-line-narrowing experiments. Two sets of 3MLCT transitions are observed in conventional spectroscopy of [Ru(bpy-d(n))(3-x)(bpy-d(m))x]2+ (x = 1, 2; n = 0, 2; m = 2, 8; n not = m) complexes doped into [Zn(bpy)3](ClO4)2. The two sets coincide with the 3MLCT transitions observed for the homoleptic [Ru(bpy-d(m))3]2+ and [Ru(bpy-d(n))3]2+ complexes and can thus be assigned to localized 3MLCT transitions to the bpy-d(m) and bpy-d(n) ligands. The THB experiments presented in this paper exclude a two-site hypothesis. When spectral holes are burnt at 1.8 K into 3MLCT transitions associated with the bpy and bpy-d2 ligands in [Ru(bpy)(bpy-d8)2]2+, [Ru(bpy)2(bpy-d8)]2+, and [Ru(bpy-d2)2(bpy-d8)]2+, side holes appear in the 3MLCT transitions associated with the bpy-d8 ligands approximately 40 and approximately 30 cm(-1) higher in energy. Since energy transfer to sites 40 or 30 cm(-1) higher in energy cannot occur at 1.8 K, the experiments unequivocally establish that the two sets of 3MLCT transitions observed for [Ru(bpy-d(n))(3-x)(bpy-d(m))x]2+ (x = 1, 2) complexes in [Zn(bpy)3](ClO4)2 occur on one molecular cation.  相似文献   

19.
Neutral diastereoisomeric diruthenium(III) complexes, meso- and rac-[(acac)(2)Ru(μ-adc-OR)Ru(acac)(2)] (acac(-) = 2,4-pentanedionato and adc-OR(2-) = dialkylazodicarboxylato = [RO(O)CNNC(O)OR](2-), R = tert-butyl or isopropyl), were obtained from electron transfer reactions between Ru(acac)(2)(CH(3)CN)(2) and azodicarboxylic acid dialkyl esters (adc-OR). The meso isomer 3 with R = isopropyl was structurally characterized, revealing two deprotonated and N-N coupled carbamate functions in a reduced dianionic bridge with d(N-N) = 1.440(5) ?. A rather short distance of 4.764 ? has been determined between the two oxidized, antiferromagnetically coupled Ru(III) centers. The rac isomer 4 with R = isopropyl exhibited stronger antiferromagnetic coupling. While the oxidation of the neutral compounds was fully reversible only for 3 and 4, two well-separated (10(8) < K(c) < 10(10)) reversible one-electron reduction steps produced monoanionic intermediates 1(-)-4(-) with intense (ε ≈ 3000 M(-1) cm(-1)), broad (Δν(1/2) ≈ 3000 cm(-1)) absorptions in the near-infrared (NIR) region around 2000 nm. The absence of electron paramagnetic resonance (EPR) signals even at 4 K favors the mixed-valent formulation Ru(II)(adc-OR(2-))Ru(III) with innocently behaving bridging ligands over the radical-bridged alternative Ru(II)(adc-OR(?-))Ru(II), a view which is supported by the metal-centered spin as calculated by density functional theory (DFT) for the methyl ester model system. The second reduction of the complexes causes the NIR absorption to disappear completely, the EPR silent oxidized forms 3(+) and 4(+), calculated with asymmetrical spin distribution, do not exhibit near infrared (NIR) activity. The series of azo-bridged diruthenium complex redox systems [(acac)(2)Ru(μ-adc-R)Ru(acac)(2)](n) (n = +,0,-,2-), [(bpy)(2)Ru(μ-adc-R)Ru(bpy)(2)](k) (k = 4+,3+,2+,0,2-), and [(acac)(2)Ru(μ-dih-R)Ru(acac)(2)](m) (m = 2+,+,0,-,2-; dih-R(2-) = 1,2-diiminoacylhydrazido(2-)) is being compared in terms of electronic structure and identity of the odd-electron intermediates, revealing the dichotomy of innocent vs noninnocent behavior.  相似文献   

20.
Hirano T  Oi T  Nagao H  Morokuma K 《Inorganic chemistry》2003,42(20):6575-6583
cis-[Ru(NO)Cl(pyca)(2)] (pyca = 2-pyridinecarboxylato), in which the two pyridyl nitrogen atoms of the two pyca ligands coordinate at the trans position to each other and the two carboxylic oxygen atoms at the trans position to the nitrosyl ligand and the chloro ligand, respectively (type I shown as in Chart 1), reacted with NaOCH(3) to generate cis-[Ru(NO)(OCH(3))(pyca)(2)] (type I). The geometry of this complex was confirmed to be the same as the starting complex by X-ray crystallography: C(13.5)H(13)N(3)O(6.5)Ru; monoclinic, P2(1)/n; a = 8.120(1), b = 16.650(1), c = 11.510(1) A; beta = 99.07(1) degrees; V = 1536.7(2) A(3); Z = 4. The cis-trans geometrical change reaction occurred in the reactions of cis-[Ru(NO)(OCH(3))(pyca)(2)] (type I) in water and alcohol (ROH, R = CH(3), C(2)H(5)) to form [[trans-Ru(NO)(pyca)(2)](2)(H(3)O(2))](+) (type V) and trans-[Ru(NO)(OR)(pyca)(2)] (type V). The reactions of the trans-form complexes, trans-[Ru(NO)(H(2)O)(pyca)(2)](+) (type V) and trans-[Ru(NO)(OCH(3))(pyca)(2)] (type V), with Cl(-) in hydrochloric acid solution afforded the cis-form complex, cis-[Ru(NO)Cl(pyca)(2)] (type I). The favorable geometry of [Ru(NO)X(pyca)(2)](n)(+) depended on the nature of the coexisting ligand X. This conclusion was confirmed by theoretical, synthetic, and structural studies. The mono-pyca-containing nitrosylruthenium complex (C(2)H(5))(4)N[Ru(NO)Cl(3)(pyca)] was synthesized by the reaction of [Ru(NO)Cl(5)](2)(-) with Hpyca and characterized by X-ray structural analysis: C(14)H(24)N(3)O(3)Cl(3)Ru; triclinic, Ponemacr;, a = 7.631(1), b = 9.669(1), c = 13.627(1) A; alpha = 83.05(2), beta = 82.23(1), gamma = 81.94(1) degrees; V = 981.1(1) A(3); Z = 2. The type II complex of cis-[Ru(NO)Cl(pyca)(2)] was synthesized by the reaction of [Ru(NO)Cl(3)(pyca)](-) or [Ru(NO)Cl(5)](2)(-) with Hpyca and isolated by column chromatography. The structure was determined by X-ray structural analysis: C(12)H(8)N(3)O(5)ClRu; monoclinic, P2(1)/n; a = 10.010(1), b = 13.280(1), c = 11.335(1) A; beta = 113.45(1) degrees; V = 1382.4(2) A(3); Z = 4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号