首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Inductively coupled plasma mass spectrometry (ICP-MS) is an important instrumental technique for elemental analysis. However, some elements suffer from spectral interferences caused by ions derived from argon plasma gas and matrix components. The determination of copper isotopes is affected by 40Ar23Na+ and 40Ar25Mg+. The performance of an ICP-MS with a collision reaction interface (CRI) and cool plasma conditions for correction of spectral interferences was evaluated here. The efficiency of the CRI was studied introducing H2 or He through sampler and skimmer cones. Gas introduction through the sampler cone was ineffective. Complete elimination of spectral interferences was reached when introducing 60 or 80 mL min−1 of H2 in the skimmer cone, but sensitivity losses were as large as 99%. Further, the effect of interferences was checked when the argon plasma was operated under cool plasma conditions. The effects of the applied radiofrequency (0.6, 0.8, 0.9, and 1.0 kW), sampling depth (5.5, 8.5 and 11.5 mm), and dwell time (25 and 50 ms) were studied considering interference reduction and sensitivities. Best conditions were reached at 0.8 kW. Subsequently, both CRI and cool plasma conditions were combined to evaluate their performance on reduction of polyatomic Na and Mg argide interferences. Spectral interferences were eliminated using a CRI with 20 mL min−1 H2 introduced through the skimmer cone, cool plasma conditions at 0.8 kW and sampling depth of 8.5 mm. This work demonstrated the feasibility of combining CRI and cool plasma for circumventing some spectral interferences on Cu determination by ICP-QMS.  相似文献   

2.
The determination of arsenic (75As) was studied using an ICP-MS equipped with collision cell technology (CCT). Different mixtures of gases (He and H2) were tested using HCl conditions and a He flow rate of 4 mL min−1 was found to be suitable for the removal of the poly-atomic spectral interference [40Ar35Cl]+. Trueness of the optimised method has been evaluated in both standard and CCT modes on six certified reference materials in foodstuffs of animal origin and on three external proficiency testing schemes (FAPAS). The results obtained generally coincided with the certified values, except for CCT mode in some categories of samples (meat, mussels and milk powder), for which a positive bias on results was observed due to the formation of poly-atomic interferences within the collision cell. The main interferences were studied and their contributions estimated. [58Fe16O1H]+ and [74Ge1H]+ were the most significant interferences formed in the cell. Finally, different parameters (e.g. hexapole and quadrupole bias voltage, nebuliser gas flow) were optimised to try to attenuate these interferences.  相似文献   

3.
Colon M  Hidalgo M  Iglesias M 《Talanta》2011,85(4):1941-1947
The determination of arsenic by inductively coupled plasma mass spectrometry (ICP-MS) in natural waters with high sodium and chloride content has been investigated. The instrument used is equipped with an octopole collision/reaction cell to overcome spectroscopic interferences. Thus, the optimization of collision/reaction gas flow rates is required when using a pressurized cell. A mixture of 2.9 mL min−1 of H2 and 0.5 mL min−1 of He has been found to be suitable for the removal of 40Ar35Cl+ interference.The effect of the introduction of small amounts of alcohol has also been studied in this work under both vented and pressurized cell conditions. It has been observed that the presence of 4% (v/v) of ethanol or methanol results in an increase in arsenic sensitivity. Moreover, under vented cell conditions the addition of alcohol also decreases the formation of polyatomic interference. However, this decrease is not observed under pressurized cell conditions.Different elements have been studied as possible internal standards for arsenic determination in presence of high amounts of sodium. Good results have been obtained for rhodium and yttrium under both vented and pressurized cell conditions. Although the presence of alcohol in the sample matrix also affects their behaviour, rhodium and yttrium are still the most suitable elements to correct for these matrix effects.Different experimental conditions have been compared for arsenic determination in spiked, certified and natural waters with high sodium and chloride content. The best results have been obtained under pressurized cell conditions, in the presence of ethanol and using rhodium as internal standard.  相似文献   

4.
The application of an ion-guiding buffer gas-filled hexapole collision and reaction cell in ICP-MS has been studied in order to give a preliminary performance characterization of a new instrument providing this feature for increasing the ion yield and decreasing contributions from Ar induced interfering molecular ions. As buffer gas He was used while H2 served as reaction gas. Addition of the latter can be an effective means for reduction of typical argon induced polyatomic ions (Ar+, ArO+, Ar2 +) by orders of magnitude owing to gas phase reactions. Molecular interferences generated in the cell can be suppressed by a retarding electric field established by a dc hexapole bias potential of –2 V. Received: 10 May 1999 / Revised: 4 June 1999 / Accepted: 12 June 1999  相似文献   

5.
The application of an ion-guiding buffer gas-filled hexapole collision and reaction cell in ICP-MS has been studied in order to give a preliminary performance characterization of a new instrument providing this feature for increasing the ion yield and decreasing contributions from Ar induced interfering molecular ions. As buffer gas He was used while H2 served as reaction gas. Addition of the latter can be an effective means for reduction of typical argon induced polyatomic ions (Ar+, ArO+, Ar2 +) by orders of magnitude owing to gas phase reactions. Molecular interferences generated in the cell can be suppressed by a retarding electric field established by a dc hexapole bias potential of –2 V.  相似文献   

6.
The determination of chromium (52Cr), iron (56Fe) and selenium (80Se) isotopes in foodstuffs of animal origin has been performed by collision cell technology (CCT) mode using an inductively coupled plasma mass spectrometry (ICP-MS) as detector after closed vessel microwave digestion. To significantly decrease the argon-based interferences at mass to charge ratios (m/z): 52 (40Ar12C), 56 (40Ar16O) and 80 (40Ar40Ar), the gas-flow rates of a helium and hydrogen mixture used in the hexapole collision cell were optimised to 1.5 ml min−1 H2 and 0.5 ml min−1 He and the quadrupole bias was adjusted daily between −2 and −15 mV. Limits of quantification (LOQ) of 0.025, 0.086 and 0.041 mg kg−1 for Cr, Fe and Se, respectively, in 6% HNO3 were estimated under optimized CCT conditions. These LOQ were improved by a factor of approximately 10 for each element compared to standard mode.Precision under repeatability, intermediate precision reproducibility and trueness have been tested on nine different certified reference materials in foodstuffs of animal origin and on an external proficiency testing scheme. The results obtained for chromium, iron and selenium were in all cases in good agreement with the certified values and trueness was improved, compared to those obtained in standard mode.  相似文献   

7.
Ion-pairing chromatography coupled with inductively coupled plasma mass spectrometry (ICP-MS) used for the speciation of phosphorus is limited as the mobile phase containing organic solvents changes in detection sensitivity and the carbon precipitates on torch and cones. To address this issue, anion-exchange chromatography with ICP-MS has been used for the speciation of glyphosate, phosphate and aminomethylphosphonic acid in soil extracts. The separation of the targets on a new column was achieved within 5 min using an eluent containing 20 mM NH4NO3 at pH 5.1. Furthermore, since the polyatomic ions such as 14N16O1H+ and 15N16O+ from a nitrogen-based ion-pairing reagent interfered with ICP-MS detection of 31P, an octopole reaction system was investigated to determine whether the polyatomic interferences could be reduced. The results show that addition of He to the cell can benefit analyses by reducing such interferences, but at the expense of reduced sensitivity. The detection limits in the range of 1.0-1.5 μg L−1 (expressed as P) was achieved when 50 μL was injected using He as the collusion gas.  相似文献   

8.
Anion-exchange chromatography (Hamilton, PRP-X100) with inductively coupled plasma mass spectrometry (ICP-MS) is commonly used for the speciation of arsenic in environmental and biological samples. However, retentions for As species are frequently different because of the use of widely different mobile phases. In addition, chloride in matrices interferes with arsenic determination. In this study, we systematically investigated various mobile phases based on ammonium salts affecting arsenic retention to eliminate chloride interference chromatographically. Hence, various mobile phases based on ammonium salts, including NH4H2PO4, NH4HPO4, NH4Ac, NH4HCO3 and NH4NO3, were examined for reasonable resolution and to separate chloride from arsenic species. The best result was obtained with a mobile phase containing 30 mM NH4H2PO4 at pH 5.6, where the separation of arsenic species, including arsenite [As(III)], arsenate [As(V)], dimethylarsinic acid (DMA) and monomethylarsonic acid (MMA)], was achieved within 9 minutes with reasonable resolution and free of chloride interference at its high level (500 mg L− 1). The detection limits for the arsenic species were in the range of 0.1-0.3 μg L− 1 with a direct injection of sample without removing matrix. Finally, the proposed method was used for the determination of arsenic species in contaminated soil and plant tissues.  相似文献   

9.
Efficiencies of He/NH3 and He/H2 collision gases were compared in a conventional type of hexapole cell of an inductively coupled plasma mass spectrometer (ICP-MS). The optimum conditions [hexapole and quadrupole bias voltage (VH and VQ) and collision/reaction gas flow rates] were tested for vanadium determination (51V) in chloride matrices. When the He/H2 mixture was used, the optimum values of VH and VQ were −10.0 and −8.0 V, respectively. This set-up corresponds to the kinetic energy discrimination effect. When the He/NH3 mixture was used, the optimum values of VH and VQ were +10.0 and −7.0 V, respectively. Positive VH values correspond to the ion kinetic energy effect, which allows the reactivity of the ions entering the collision/reaction cell with the reaction gas to be controlled. The obtained results showed that the He/H2 mixture is not optimal for V determination in samples containing chlorides due to the insufficient suppression of the polyatomic interference of 35Cl16O+. Data obtained from vanadium determination using the He/NH3 mixture were consistent for all selected Cl concentrations, and the results were acceptable. The detection limit was comparable with detection limits obtained from ICP-MS equipped with a dynamic reaction cell. Analyses of elements forming interfering molecules, e.g., iron (56Fe), arsenic (75As) and selenium (80Se), were in good agreement with the certified values for both studied collision/reaction gas mixtures.  相似文献   

10.
Different collision gases (H2, He and premixed 7% H2 in He) used in the hexapole collision cell of an inductively coupled plasma-mass spectrometer (ICP-MS) were compared, and the gas-flow rates were optimized for the determination of arsenic (), iron () and selenium (). The study showed that the argon-based interferences at mass-to-charge ratios (m/z) of 56, 75 and 80 can be overcome by the optimized gas flows (7.5 ml min−1 premixed 7% H2 in He and 2 ml min−1 H2) in the hexapole collision cell. Detection limits of 15.5 ng l−1 for iron () and 29 ng l−1 for selenium () in 2% (v/v) HNO3 were obtained under optimized collision cell conditions. The detection limit for arsenic () obtained in difficult hydrochloride acid matrix (5% HCl (v/v)) was 153 ng l−1. The accuracy of the optimized method was confirmed by analyzing two moss reference materials. The results obtained by ICP-MS for arsenic, selenium and iron from both moss reference samples were, in most cases, in good agreement with the certified values.  相似文献   

11.
The analysis of some Italian mineral waters by ICP-MS has revealed errors in the determination of As and Cr in natural effervescent or carbonated waters due to the presence of dissolved inorganic carbon (DIC). This leads to overestimate As and Cr in 1% (v/v) HNO3 acidified samples, analysed within 1-2 h after the acidification. The overestimation of As concentration is caused by matrix interferences producing a signal enhancement due to the presence of dissolved inorganic carbon. This effect is analogous to that observed in the presence of organic carbon and occurs at millimolar DIC levels. The overestimation of Cr concentration is due to the 40Ar12C+ species interfering with 52Cr+ despite the use of the octopole reaction system. The optimization of the He flow in the collision cell can solve the latter problem, but the required increase in the flow rate decreases the sensitivity of the ICP-MS technique. The observed effects in CO2 rich mineral waters and artificial NaHCO3 solutions suggest that 5-10 mM DIC levels may affect the determination of As and Cr concentration in thermal waters, rivers, lakes and groundwaters.  相似文献   

12.
Arsenic compounds including arsenous acid (As(III)), arsenic acid (As(V)), dimethylarsinic acid (DMA) and monomethylarsonic acid (MMA) were separated by high-performance liquid chromatography (HPLC) and detected by inductively coupled plasma mass spectrometry (ICP-MS). A Hamilton PRX-100 anionic-exchange column and a pH 8.5 K2HPO4/KH2PO4 5.0 × 10−3 mol L−1 mobile phase were used to achieve arsenic speciation. The separation of arsenic species provided peaks of As(III) at 2.75 min, DMA at 3.33 min, MMA at 5.17 min and As(V) at 12.5 min. The detection limits, defined as three times the standard deviation of the lowest standard measurements, were found to be 0.2, 0.2, 0.3 and 0.5 ng mL−1 for As(III), DMA, MMA and As(V), respectively. The relative standard deviation values for a solution containing 5.0 μg L−1 of As(III), DMA, MMA and As(V) were 1.2, 2.1, 2.5 and 3.0%, respectively. This analytical procedure was applied to the speciation of arsenic compounds in drinking (soft drink, beer, juice) samples. The validation of the procedure was achieved through the analysis of arsenic compounds in water and sediment certified reference materials.  相似文献   

13.
Guo W  Hu S  Li X  Zhao J  Jin S  Liu W  Zhang H 《Talanta》2011,84(3):887-894
Direct determination of trace arsenic in high chlorine food samples by ICP-MS is complicated by the presence of ArCl+ interferences, and the high first ionization energy of As (9.81 eV) also results in low analytical sensitivity in ICP-MS. In this work, two strategies based on ion-molecule reactions were successfully used to eliminate ArCl spectral interference in a dynamic reaction cell (DRC). The interference ion (40Ar35Cl+) was directly removed by the reaction with methane gas, and the background signal was reduced by up to 100-fold at m/z 75. Alternatively, by using molecule oxygen as the reaction gas, 75As+ was effectively converted to 75As16O+ that could be detected at m/z 91 where the background is low. The poor signal intensity of As or AsO was improved 3-4 times by addition of 4% methanol in the analyzed solutions. The limit of quantitation (LOQ) for 75As (CH4-DRC method) and 75As16O (O2-DRC method) was 0.8 and 0.3 ng g−1 and the analytical results of seaweed and yellow croaker standard reference materials were in good agreement with the certified values. As the routine arsenic monitoring method in our laboratory, it was applied to the accuracy determination of 119 high chlorine food samples from eight different markets of Beijing.  相似文献   

14.
Continuous flow generation of Br2, Cl2 and H2S coupled to a low-power 2.45 GHz microwave microstrip He plasma exiting from a capillary gas channel in a micro-fabricated sapphire wafer with microstrip lines has been used for the optical emission spectrometric determination of Br, Cl and S using a miniaturized optical fiber CCD spectrometer. Under optimized conditions, detection limits (3σ) of 330, 190 and 220 μg l− 1 for Br, Cl and S, respectively, under the use of the Br II 478.5 nm, Cl I 439.0 nm and S I 469.0 nm lines were obtained and the calibration curves were found to be linear over 2 orders of magnitude. In addition, when introducing CO2 and using the rotational line of the CN molecular band at 385.7 nm the detection limit for C was 4.6 μg l− 1. The procedure developed was found to be free from interferences from a number of metal cations and non-metal anions. Only the presence of CO32− and CN was found to cause severe spectral interferences as strong CN and C2 molecular bands occurred as a result of an introduction of co-generated CO2 and HCN into the plasma. With the procedure described Br, Cl and S could be determined at a concentration level of 10–30 mg l− 1 with accuracy and precision better than 2%.  相似文献   

15.
Tang B  Zhang L  Xu KH 《Talanta》2006,68(3):876-882
A new kind of near-infrared fluorescence agent, tricarbochlorocyanine dye (Cy.7.Cl), had been synthesized in house and used for near-infrared spectrofluorimetric determination of hydrogen peroxide (H2O2) by flow injection analysis (FIA) for the first time. The oxidation reaction of Cy.7.Cl with H2O2 occurred under the catalysis of horseradish peroxidase (HRP) and it was studied in detail. The possible reaction mechanism was discussed. Under optimal experimental conditions, fluorescence from Cy.7.Cl displayed excitation and emission maxima (ex/em) at 780 and 800 nm, respectively. The two linear working ranges were 1.86 × 10−7 to 4.11 × 10−7 mol L−1 and 4.11 × 10−7 to 7.19 × 10−6 mol L−1, respectively. The detection limit was 5.58 × 10−8 mol L−1 of H2O2. The effect of interferences was studied. The proposed method was successfully applied to the determination of hydrogen peroxide in rainwater, serum and plant samples.  相似文献   

16.
Rui Liu  Maoyang Xi  Yi Lv 《Talanta》2009,78(3):885-635
Arsine trapping on resistively heated tungsten coil was investigated and an analytical method for ultratrace arsenic determination in environmental samples was established. Several chemical modifiers, including Re, Pt, Mo, Ta and Rh, were explored as permanent chemical modifiers for tungsten coil on-line trapping and Rh gave the best performance. Arsine was on-line trapped on Rh-coated tungsten coil at 640 °C, then released at 1930 °C and subsequently delivered to an atomic fluorescence spectrometer (AFS) by a mixture of Ar and H2 for measurement. In the medium of 2% (v/v) HCl and 3% (m/v) KBH4, arsine can be selectively generated from As(III). Total inorganic arsenic was determined after pre-reduction of As(V) to As(III) in 0.5% (m/v) thiourea-0.5% (m/v) ascorbic acid solution. The concentration of As(V) was calculated by difference between the total inorganic arsenic and As(III), and inorganic arsenic speciation was thus achieved. With 8 min on-line trapping, the limit of detection was 10 ng L−1 for As(III) and 9 ng L−1 for total As; and the precision was found to be <5% R.S.D. (n = 7) for 0.2 ng mL−1 As. The proposed method was successfully applied in total arsenic determination of several standard reference materials and inorganic arsenic speciation analysis of nature water samples.  相似文献   

17.
A modified sequential extraction method was developed to characterize arsenic (As) associated with different solid constituents in surficial deposits (sediments), which are unconsolidated glacial deposits overlying bedrock. Current sequential extraction methods produce a significant amount of unresolved As in the residual fraction, but our proposed scheme can fractionate >90% of the As present in sediments. Sediment samples containing different As concentrations (3–35 μg g−1) were used to assess the developed method. The pooled amount of As recovered from all the fractions using the developed method was similar (83–122%) to the total As extracted by acid digestion. The concentrations of As in different fractions using the developed scheme were comparable (89–106%) to the As fractions obtained by other existing methods. The developed method was also evaluated for the sequential extraction of other metals such as copper (Cu), cobalt (Co), chromium (Cr) and strontium (Sr) in the sediment samples. The pooled concentrations of these four individual metals from all the fractions were similar (96–104%) to their total concentrations extracted by acid digestion. During method development, we used extractants that did not contain chloride to eliminate formation of polyatomic ions of argon chloride (40Ar35Cl) that interfered with 75As when analyzed using inductively coupled plasma mass spectrometer (ICP-MS). The results suggest that the developed method can reliably be employed for complete As and other metals’ fractionation in sediments using ICP-MS.  相似文献   

18.
A fast, sensitive and simple non-chromatographic analytical method was developed for the speciation analysis of toxic arsenic species in cereal samples, namely rice and wheat semolina. An ultrasound-assisted extraction of the toxic arsenic species was performed with 1 mol L− 1 H3PO4 and 0.1% (m/v) Triton XT-114. After extraction, As(III), As(V), dimethylarsinic acid (DMA) and monomethylarsonic acid (MMA) concentrations were determined by hydride generation atomic fluorescence spectrometry using a series of proportional equations corresponding to four different experimental reduction conditions. The detection limits of the method were 1.3, 0.9, 1.5 and 0.6 ng g− 1 for As(III), As(V), DMA and MMA, respectively, expressed in terms of sample dry weight. Recoveries were always greater than 90%, and no species interconversion occurred. The speciation analysis of a rice flour reference material certified for total arsenic led to coherent results, which were also in agreement with other speciation studies made on the same certified reference material.  相似文献   

19.
Ion chromatography (IC) coupled with inductively coupled plasma mass spectrometry (ICP-MS) was systematically investigated for determining the speciation of chromium in environmental samples. Firstly, the stability of complexes formed by Cr(III) with various aminopolycarboxylic acids was studied by electrospray ionization mass spectrometry (ESI-MS). The results showed that [Cr(EDTA)] was stable in solution. Secondly, various mobile phases were examined to separate Cl from chromium species by IC to avoid Cl interference. The separation of [Cr(EDTA)] and Cr(VI) was achieved on a new anion-exchange column (G3154A/102) using a mobile phase containing 20 mM NH4NO3 and 10 mM NH4H2PO4 at pH 7.0 without Cl interference. Detection limits for chromium species were below 0.2 μg/L with a direct injection of sample and without prior removal of interferences from the matrix. Finally, the proposed method was used for the determination of chromium species in contaminated waters.  相似文献   

20.
Determination of copper using inductively coupled plasma mass spectrometry (ICP-MS) suffers from polyatomic overlays originating from Na+ and Mg2+ matrix elements due to the formation of 40Ar23Na+ and 40Ar25Mg+ in the mass-to-charge ratios of 63 and 65, respectively. The collision/reaction cell technology belongs to the most modern methods used to overcome polyatomic interferences. Gas-filled collision/reaction cell can cause an additional mass bias effect influencing analytical precision of the method. In this study, the additional mass bias effect of the hexapole collision/reaction cell ICP-MS was studied on an example of n(65Cu)/n(63Cu) isotope ratio. As a result, a method for suppressing polyatomic interference on the mass-to-charge ratio of 63 and 65 was introduced and additional mass bias of the collision/reaction cell was lowered to an acceptable level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号