首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The infrared spectrum of isotopically enriched CH281BrF was investigated in the ν3 and ν8 region between 1150 and 1370 cm?1 at a resolution of 0.003 cm?1. The ν3 vibration of symmetry species A gives rise to an a-/b-hybrid band with a-type predominance, while the ν8 mode of A symmetry produces c-type absorption. Due to the proximity of the band origins to those of closely lying overtones and combination bands, the v3 = 1 and v8 = 1 levels were found perturbed through Coriolis resonance by the v5 = 2 (A) and v6 = v9 = 1 (A) states, respectively. The spectral analysis resulted in the identification of 3132 transitions (J ≤ 98 and Ka ≤ 14) for the ν3 and 2958 transitions (J ≤ 68 and Ka ≤ 19) for the ν8 bands. The assigned data were fitted using the Watson's A-reduction Hamiltonian in the Ir representation and the perturbation operators. Although no transitions belonging to the perturbers were observed, the band origins and excited state parameters for fundamentals and ‘dark states’ together with coupling terms for the ν3/2ν5 and ν86 + ν9 dyads were determined.  相似文献   

2.
The gas-phase infrared spectra of natural CH2 = CClF have been measured in the v 6 and 2v 12 band regions (930–1050 cm?1) by high-resolution Fourier transform spectroscopy at room temperature. 1-Chloro-1-fluoroethylene is a planar asymmetric rotor (κ = ?0.54) belonging to the symmetry point group Cs and the vibrations investigated of symmetry species A′ give rise to a/b-hybrid bands with contributions of comparable intensity from both the components.

The rovibrational analysis of the fine structure led to the identification of 1894 (J ? 73, Ka ? 20) and 718 (J ? 53, Ka ? 8) transitions for the v 6 and 2v 12 bands of the 35Cl isotopic species, respectively. Using the Watson's A-reduction Hamiltonian in the Ir representation a set of accurate spectroscopic parameters for both the excited states u 6 = 1 and u12 = 2 of 35Cl has been obtained for the first time. Transitions of 37Cl isotopomer could also be assigned in the Q branch region of the 2v 12 overtone; the determined band origin shift of 0.782 cm?1 towards the lower wavenumbers led to describing the v 12 fundamental as a vibration mainly involving the CFCl bending motion.  相似文献   

3.
The v 7 + v 8 A-type band of C2H4 has been recorded between 1932 and 1847 cm-1 with a resolution of 0·06 cm-1. The transitions with K -1 ? 8> and J ? 2>5 have been assigned. Although slight Coriolis resonances perturb the band, the analysis has been made easy through the use of an elaborate set of asymmetric top computer programmes. The band centre and a set of upper state constants have been obtained. With these constants, 288 observed upper state energy levels have been fitted with a standard deviation of 0·021 cm-1.

Using very simple expressions, we have predicted all the resonance effects perturbing the levels of ethylene near 2000 cm-1. This led us to the identification of the v 4 + v 8 and v 8 + v 10 combination bands in low resolution spectra.  相似文献   

4.
The high resolution (0.004cm?1) Fourier transform infrared spectrum of the monodeuterated form of methyl fluoride, CH2DF, has been recorded and analysed in the v 3 and v 4 band region around 1420cm?1. Both bands, coming from A′ symmetry vibrations, have a/b hybrid character, although in v 3 the b-type component prevails over the a-type. The rotational structure has been analysed using a dyad model including c-type Coriolis coupling and high order vibrational resonance between these states. Accurate upper state molecular parameters and interaction terms have been obtained by fitting about 3270 assigned transitions to Watson's A-reduced Hamiltonian in the Ir representation. In addition, from a simultaneous fit of ground state combination differences coming from this analysis and 42 literature microwave transitions, an improved and more complete set of ground state constants, including three new sextic centrifugal distortion terms (ΦJK, ΦKJ and ΦK), has been derived.  相似文献   

5.
The Fourier transform infrared spectrum of the v11 band of ethylene-d4 (C2D4) has been recorded with an unapodized resolution of 0.006 cm?1 in the frequency range 2150 to 2250cm?1. The v11 band, with a band centre of about 2201 cm?1, was found to be perturbed by the nearby v2 + v7 band centred at about 2235 cm?1 by a b-type Coriolis interaction. By fitting a total of 772 infrared transitions of v11 using a Watson's A-reduced Hamiltonian in the Ir representation with the inclusion of b-type Coriolis interaction term, two sets of constants, up to quartic distortion constants for the v11 = 1 state, and principal rotational constants for the v2 + v7 = 1 dark state, were derived. The inertia defect of the v11 state was found to be 0.0693 ± 0.0004u Å2.  相似文献   

6.
The infrared spectrum of the perpendicular fundamental v5 of chloroform around 776 cm?1 has been studied by applying two high resolution methods. A short range from the central part of the spectrum was measured with a diode laser by using a cold jet sample including chloroform in natural isotopic abundancies. More than 100 rotational lines of 12CH35Cl3 could be assigned. The whole band region was measured by a Fourier transform spectrometer at a resolution of 0.0010cm?1. In this case an isotopically pure sample of 12CH35Cl3 was used. Starting from the results of the diode laser investigation more than 2000 lines could be assigned with Jmax = 91 and Kmax = 58. In addition to the infrared spectra, millimetre-wave lines also were measured. A total of 58 lines corresponding to J values 22, 23 and 35 at the excited vibration state v5 = 1 were assigned and analysed. All the data from three different spectra were simultaneously fitted and, for example, the results v0 = 775.961 50(3) cm?1, 98, B5-B0 = ?0.180171(22) × 10?3cm?1, C5 ? C0 = ?0.170 57(15) × 10?3cm?1, and (Cζ)5 = 0.047 5294(11) cm?1 were obtained.  相似文献   

7.
Infrared microwave double resonance signals have been observed for CH3OH using the 3.5-μm HeXe laser line. When microwave transitions in the ground vibrational state are pumped, the double resonance signals are obtained on two infrared transitions v = 1 ← 0 of νCH(a′); v = 1, J, K, μ = 4, 2, 1 ← v = 0, J, K, μ = 3, 2, 1, and 4, 3, 1 ← 3, 3, 1. Three weak double resonance signals are due to the collision-induced transitions. Their relative intensities have been explained successfully by using the rate constants of collision-induced transitions which are proportional to the dipole matrix elements between the states involved in the transitions.  相似文献   

8.
9.
The first high-resolution infrared spectrum of CHD279Br has been investigated by Fourier transform spectroscopy in the range 940–1100 cm?1 at an unapodised resolution of 0.0025 cm?1. This spectral region is characterised by the v4 (1036.8389 cm?1) fundamental band, corresponding to the CD2 wagging mode. The rotational structure of the a- and c-type components of the hybrid band has been extensively assigned for transitions involving values of J and Ka up to 65 and 15, respectively. The ground state constants up to the quartic centrifugal distortion terms have been obtained for the first time by ground state combination differences from 5251 assigned transitions and subsequently employed for the evaluation of the band origin and the excited state parameters of v4. Watson’s S-reduced Hamiltonian in the Ir representation has been used in the ro-vibrational analysis. The dipole moment ratio |Δμa/Δμc| of the band has been estimated to be 1.3?±?0.1 from spectral simulations.  相似文献   

10.
The ν6(E) fundamental vibration-rotation band of monodeuteromethane (12CH3D) has been recorded in the spectral range 1033–1270 cm?1 with a resolution of approximately 0.04 cm?1. Of the 669 transitions with J′ ≤ 17 identified, 633 have been retained for the determination of the rotational levels in the upper state v6 = 1. The Coriolis interaction between the v6 = 1(E) and v3 = 1 (A1) vibrational states of 12CH3D results in large A1A2 splittings of levels with v6 = 1 and |K ? l6| = 0 or 3; the mixing in K and l6 also gives rise to some ten forbidden transitions observed in the spectra. These effects have been very well explained within the formulation based on the contact transformation method. Values of 15 molecular structure constants of the v6 = 1 state have been determined from a least-squares analysis of the 633 retained transitions. These constants can be used to estimate values of the upper-state energies up to fourth order, and through them the spectral positions of the 633 retained transitions are reproduced with an overall standard deviation of 0.013 cm?1, which is within experimental uncertainties.  相似文献   

11.
The infrared spectra of CH2=CHF have been investigated in the ν5 and ν6 band regions between 1280 and 1400?cm?1, at a resolution of about 0.002?cm?1, using a tunable diode laser spectrometer. These vibrations of symmetry species A′ give rise to a/b-hybrid bands with different contributions from both the components. Spectral analysis resulted in the identification of 1565 (J≤46, K a ≤11) and 1651 (J≤48, K a ≤15) transitions of the ν5 and ν6 fundamentals, respectively. Both bands are perturbed by the nearby states ν8?+?ν9 and ν9?+?ν11 through different Coriolis resonances and an anharmonic interaction. Using Watson's A-reduction Hamiltonian in the Ir representation and perturbation operators almost all the transitions have been fitted simultaneously to a model including six resonances within the tetrad ν568?+?ν99?+?ν11. A set of spectroscopic constants for the ν5 and ν6 bands, as well as parameters for the dark states ν8?+?ν9 and ν9?+?ν11 and coupling constants, have been determined. From spectral simulations the dipole moment ratio |Δμ a /Δμ b | was estimated to be 0.6?±?0.1 and 2.0±0.3 for the ν5 and ν6 bands, respectively.  相似文献   

12.
Methyl chloride is of interest for atmospheric applications, since this molecule is directly involved in the catalytic destruction of ozone in the lower stratosphere. In a previous work [Bray et al. JQSRT 2011;112:2446], lines positions and intensities of self-perturbed 12CH335Cl and 12CH337Cl have been studied into details for the 3.4 μm spectral region. The present work is focused on measurement and calculation of N2-broadening coefficients of the 12CH335Cl and 12CH337Cl isotopologues. High-resolution Fourier Transform spectra of CH3Cl–N2 mixtures at room-temperature have been recorded between 2800 and 3200 cm?1 at LADIR (using a classical source) and between 47 and 59 cm?1 at SOLEIL (using the synchrotron source on the AILES beamline). 612 mid-infrared transitions of the ν1 band and 86 far-infrared transitions of the pure rotational band have been analyzed using a multispectrum fitting procedure. Average accuracy on the deduced N2-broadening coefficients has been estimated to 5% and 10% in the mid- and far-infrared spectral regions, respectively. The J- and K-rotational dependences of these coefficients have been observed in the mid-infrared region and then a simulation has been performed using an empirical model for 0≤J≤50, K≤9. The 12CH335Cl–N2 line widths for 0≤J≤50 and K≤10 of the ν1 band and for 55≤J≤67 and K≤15 of the pure rotational band have been computed using a semi-classical approach involving exact trajectories and a real symmetric-top geometry of the active molecule. Finally, a global comparison with the experimental and theoretical data existing in the literature has been performed. Similar J- and K-rotational dependences have been appeared while no clear evidence for any vibrational or isotopic dependences have been pointed out.  相似文献   

13.
New high resolution Fourier transform spectra of pure 12CH335Cl and 12CH337Cl isotopomers of chloromethane have been recorded in Wuppertal covering the region from 600 to 3800 cm−1. New rotational transitions within the v2=1, v5=1, and v3=2 states have been measured at Lille. A first global analysis of the lower four band systems of the molecule (700-1800 cm−1) is reported. The model was based on an effective Hamiltonian and dipole moment expressed in terms of irreducible tensor operators. A common set of 125 effective hamiltonian parameters (sixth order) has been adjusted to fit simultaneously some 11 000 IR data for each of the isotopomers including 153 mm wave data for 12CH335Cl. The assignments involve 12 sets of transitions (6 cold bands, 3 hot bands, and 3 pure rotational systems for 12CH335Cl). The standard deviation was on average 0.00014 cm−1 and 175 kHz for the IR and MMW data, respectively. The v3=v6=1 state was analysed for the first time principally from observed hot band transitions.  相似文献   

14.
The microwave spectrum of CH3OD has been observed in the frequency region between 14 and 92 GHz. All the ground-state transitions with J ≤ 8 and J = 2 ← 1, a-type transitions in the excited torsional states (v = 1 and v = 2) have been observed. The spectrum has been analyzed and rotational constants, torsional constants, torsion-vibration-rotation interaction constants, and centrifugal distortion constants have been evaluated. The Stark effect measurements have been made and the dipole moment components have been determined as μa = 0.833 ± 0.008 D and μb = 1.488 ± 0.015 D.  相似文献   

15.
The cw dye laser excitation spectrum of the A?1A″(050) ← X?1A′(000) vibronic band of HCCl was observed between 16 539 and 16 656 cm?1 with the Doppler-limited resolution, 0.03 cm?1. The HCCl molecule was generated by the reaction of discharged CF4 with CH3Cl. The observed spectra were assigned to c-type transitions with ΔKa = ±1 and also to axis-switching transitions with ΔKa = 0 or ?2, but all with Ka = 0, both for HC35Cl and HC37Cl. A rotational analysis yielded the rotational constants and quartic centrifugal distortion constants for the ground vibronic state and the band origin. A weak vibronic band, about one-third as intense as the main band, was found at about 57 cm?1 to the violet of the main band for both isotopic species, and was ascribed to a transition from the ground vibronic state to a vibrational level, possibly (041), of the à state. The rotational levels of HC35Cl in the à state showed a large perturbation; the J′ = 8, 9, and 10 levels were found to be split into two components. A normal coordinate analysis was carried out to calculate the centrifugal distortion constants and the inertia defect, which were in fair agreement with the observed values. The molecular structure of HCCl in the ground vibronic state was recalculated from the rotational constants of the two isotopic species combined with the 0.75B0 + 0.25C0 value previously reported for DC35Cl.  相似文献   

16.
The 2v 2, v 1 and v 3 bands of H2 16O occurring in the region 2930–4255 cm-1 were studied from a spectrum recorded with a high resolution Fourier transform spectrometer (resolution: 0·005 cm-1). The set of the observed transitions leads by a least squares method to the determination of very accurate values of the rotational levels belonging to the vibrational states (000), (020), (100), (001). From these levels, using Watson's Hamiltonian, we have obtained respectively 21 and 17 rotational constants for the states (000) and (020).  相似文献   

17.
The infrared spectra of the a-type transitions of the ν2 and ν3 bands of HO35Cl and HO37Cl have been obtained under high resolution. Line assignments of both bands have been made, and the spectroscopic constants have been obtained for both bands using a Watson Hamiltonian. Lines of the Ka = 5 subband of the ν2 band of the HO35Cl molecule were found to be slightly shifted by an interaction with the Ka = 4 level of the 2ν3 vibrational state. The b-type transitions permitted for both bands were too weak to observe. Relative intensities of selected lines of both bands have been measured, and empirical Herman-Wallis factors have been determined.  相似文献   

18.
19.
The upper levels of the bands v 5 and v 3 + v 6 of CH3I are coupled through a Fermi and an l(2, -1) resonance. This gives rise to perturbation-allowed transitions. Altogether, more than 200 such lines corresponding to three different K-value pairs have been observed between 1320 cm-1 and 1520 cm-1. By fixing the sextic constant HK 0 equal to zero, the following values were obtained: A 0 = 5·173931(2) cm-1 and DK 0 = 87·36(6) × 10-6 cm-1. The possible values of HK 0 and their effects on the results are discussed.  相似文献   

20.
About 900 Stark transitions from 70 vibration-rotation transitions in CH335Cl and about 400 transitions from 38 transitions in CH335Cl in the ν6 band have been assigned. These data were analyzed simultaneously with previously published microwave data on the ν6 = 1 state. The fit has a standard deviation of about 2 MHz for the data for both isotopes. The isoptopic shift ν635 ? ν637 = 0.3766(6) cm?1. Rotational dependence of the dipole moment was also just apparent at about μJ = μK = 1 × 10?5 D, and a complete set of molecular constants is given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号