共查询到20条相似文献,搜索用时 15 毫秒
1.
The structural and electronic properties of silver-doped gold clusters Au n Ag v (2?≤?n?≤?10; v?=?0,?±1) have been systematically investigated using density functional theory. The results show that the ground state optimal structures of the cationic and neutral clusters are found to be planar up to n?=?3 and 9, respectively. However, for the anionic clusters, no three-dimensional lowest-energy structures are obtained according to DFT calculations. The calculated binding energy and dissociation energy as a function of cluster size exhibit odd–even alternations. The natural population analysis indicates that in Au n Ag v clusters charges transfer from the Ag atom to the Au frames. The trends for the vertical detachment energies, adiabatic electron affinities, adiabatic ionization potentials, and chemical hardness of Au n Ag v clusters, as the cluster size increases, are studied in detail and compared with the available experimental data. 相似文献
2.
The geometrical, electronic, and magnetic properties of small Au n V (n?=?1–8) clusters have been investigated using density functional theory at the PW91 level. An extensive structural search indicates that the V atom in low-energy Au n V isomers tends to occupy the most highly coordinated position and the ground-state configuration of Au n V clusters favors a planar structure. The substitution of a V atom for an Au atom in the Au n +1 cluster transforms the structure of the host cluster. Maximum peaks are observed for the ground-state Au n V clusters at n?=?2 and 4 for the size dependence of the second-order energy differences, implying that the Au2V and Au4V clusters possess relatively higher stability. The energy gap of the Au3V cluster is the largest of all the clusters. This may be ascribed to its highly symmetrical geometry and closed eight-electron shell. For ground-state clusters with the same spin multiplicity, as the clusters size increases, the vertical ionization potential decreases and the electron affinity increases. Magnetism calculations for the most stable Au n V clusters demonstrate that the V atom enhances the magnetic moment of the host clusters and carries most of the total magnetic moment. 相似文献
3.
4.
WANG Xin-qiang CHEN Yong 《原子与分子物理学报》2004,21(Z1):211-212
The structural and electronic properties of (CdSe)n(1≤n≤5) clusters are calculated using density functional theory within the pseudopotential and generalized gradient approximations. The calculated binding energies and highest occupied molecular orbital lowest unoccupied molecular orbital gaps are compared with those obtained within local density approximation. 相似文献
5.
The density functional theory B3PW91 with LANL2DZ basis sets has been used to study the possible geometries of Mg2Nin(n = 1–8) clusters. For the lowest energy structures of the clusters, stabilities, electronic properties, and natural bond orbital(NBO) are calculated and discussed. The results show that the doped Mg atoms reduce the stabilities of pure Ni clusters. The Mg2Ni2, Mg2Ni4, and Mg2Ni6clusters are more stable than neighboring clusters. The system appears magic number characteristics. In addition, the hybridization phenomenon occurs, owing to the interaction of Mg and Ni. The result of charge transfer is that Ni atom is negative and the Mg atom is positive. We also conclude that the 3p and 4d orbitals of the Ni atom have an effect on the stabilities of the clusters. 相似文献
6.
X. X. Jin J. G. Du G. Jiang X. Luo X. W. Wang 《The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics》2011,64(2-3):323-329
Using density functional theory (DFT) with valence basis set LANL2TZ to study the relative stabilities and electronic properties of the most stable structures of Nb n V(0,?±1) (n = 1?6) clusters. The ground state structures of Nb n V (0,?±1) keep the similar geometric structure as the host Nb n clusters. The doping of vanadium atom enhances the chemical activities of Nb n clusters. The Nb3V and Nb6V are more stable than other clusters. The average binding energy of charged systems (Nb n V+ and Nb n V? clusters) are generally larger than neutral Nb n V clusters natural population analysis shows that there are charge transfers from niobium to vanadium atoms in the small Nb1?4V, however, for larger clusters (Nb5V and Nb6V), the charge transfers are from vanadium to niobium atoms. The vertical and adiabatic ionization potentials (VIP and AIP) are estimated and the vertical one is more close to experimental results. 相似文献
7.
ZHANG Cai-rong ZHANG Bi-xia CHEN Yu-hong LI Wei-xue XU Guang-ji 《原子与分子物理学报》2006,23(B04):171-174
The hybrid density functional theory B3LYP with basis sets 6-31G* has been used to study on the equilibrium geometries and electronic structures of possible isomers of Si3N4 clusters. 24 possible isomers are obtained. The most stable isomer of Si3N4 is a 3D structure with 7 Si-N bonds and 2 N-N bonds that could beformed by 3 quadrangles. The bond properties of the most stable isomer was analyzed by using natural bond orbital method (NBO), the results suggest that the charges on Si and N atoms in Si-N bonds are quite large, so theinteraction of N-Si atoms in Si3N4 cluster is of strongly electric interaction. The primary IR and Raman vibrational frequency located at 1033.40 cm^-1, 473.63 cm^-1 respectively. The polarizabilities and hyperpolarizabilities of the most stable isomer are also analyzed. 相似文献
8.
9.
The density functional method with the relativistic effective core potential has been employed to investigate systematically the geometric structures, relative stabilities, growth-pattern behavior, and electronic properties of small bimetallic Au n Rb (n?=?1–10) and pure gold Au n (n?≤?11) clusters. For the geometric structures of the Au n Rb (n?=?1–10) clusters, the dominant growth pattern is for a Rb-substituted Au n +1 cluster or one Au atom capped on a Au n –1Rb cluster, and the turnover point from a two-dimensional to a three-dimensional structure occurs at n?=?4. Moreover, the stability of the ground-state structures of these clusters has been examined via an analysis of the average atomic binding energies, fragmentation energies, and the second-order difference of energies as a function of cluster size. The results exhibit a pronounced even–odd alternation phenomenon. The same pronounced even–odd alternations are found for the HOMO–LUMO gap, VIPs, VEAs, and the chemical hardness. In addition, about one electron charge transfers from the Au n host to the Rb atom in each corresponding Au n Rb cluster. 相似文献
10.
11.
Mao Ai-Jie Kuang Xiao-Yu Chen Gang Zhao Ya-Ru Li Yan-Fang Lu Peng 《Molecular physics》2013,111(11):1485-1494
The ab initio method based on density functional theory at the B3PW91 level has been applied to study the geometric, electronic, and magnetic properties of neutral and anionic Au n Pd (n?=?1–9) clusters. The results show that the most stable geometric structures adopt a three-dimensional structure for neutral Au7Pd and Au8Pd clusters, but for anionic clusters, no three-dimensional lowest-energy structures were obtained. The relative stabilities of neutral and anionic Au n Pd clusters were analysed by means of the dependent relationships between the binding energies per atom, the dissociation energies, the second-order difference of energies, the HOMO–LUMO energy gaps and the cluster size n, and a local odd–even alternation phenomenon was found. Natural population analysis indicates the sequential transfer from the Pd atom to the Au n frame in Au1,2,3,5Pd and Au2,3Pd? clusters, and from the Au n frame to the Pd atom in other clusters. Much to our surprise, irrespective of whether it is the total magnetic moment or the local magnetic moment, the magnetic moment presents an odd–even alternation phenomenon as a function of the cluster size n. The magnetic effects are mainly localized on the various atoms (Au or Pd) for different cluster size n. 相似文献
12.
Feng Xiaoqin Shi Daning Jia Jianming Wang Changshun 《Journal of nanoparticle research》2022,24(6):1-8
Journal of Nanoparticle Research - The creation of metal oxide aerogels is a demanded and developing area of science. Aerogel materials have a high specific surface area and can be used in a wide... 相似文献
13.
The structural evolution, stabilities, and electronic properties of copper-doped lithium Li n Cuλ (n?=?1–9, λ?=?0, ?1) clusters have been systematically investigated using a density functional method at PW91PW91 level. Extensive searches for ground-state structures were carried out, and the results showed the copper tends to occupy the most highly coordinated position and form the largest probable number of bonds with lithium atoms. By calculating the binding energies per atom, fragmentation energies and the HOMO-LOMO gaps, we found LiCu, Li7Cu, LiCu?, Li2Cu? and Li8Cu? clusters have the stronger relative stability and enhanced chemical stability. The content and pattern of frontier MOs for the most stable doped isomers were analysed to investigate the bond nature of interaction among Li and Cu atoms. The results show some σ-type and π-type bonds are formed among them, and with small admixture of the Cu d characters. To achieve a deep insight into the electron localization and reliable electronic structure information, the natural population analysis and electron localization function were performed and discussed. 相似文献
14.
This paper investigates the geometrical structures and relative stabilities of neutral AlS n(n = 2-9) using the density functional theory.Structural optimisation and frequency analysis are performed at the B3LYP/6-311G(d) level.The ground state structures of the AlS n show that the sulfur atoms prefer not only to evenly distribute on both sides of the aluminum atom but also to form stable structures in AlS n clusters.The structures of pure S n are fundamentally changed due to the doping of the Al atom.The fragmentation energies and the second-order energy differences are calculated and discussed.Among neutral AlS n(n = 2-9) clusters,AlS 4 and AlS 6 are the most stable. 相似文献
15.
Structures and electronic properties of SimN8-m(0 〈 m 〈 8) clusters: a density functional theory study
下载免费PDF全文
![点击此处可从《中国物理 B》网站下载免费的PDF全文](/ch/ext_images/free.gif)
The geometries, electronic structures and related properties of SimN8-m(0 〈 m 〈 8) clusters are studied using density functional theory (DFT) with hybrid functional B3LYP. The calculated results reveal several trends. For any stoichiometric clusters, the lowest energy isomers with an alteration of N and Si atoms are favourable in energy if the numbers of Si and N atoms are large enough to form ... Si N-Si-N... alternative chains. The bond lengths of single Si-N bonds are very close to the corresponding values of the bulk and other SiN clusters. The geometries for N-rich and Si4N4 clusters are planar structures, but three-dimensional structures are favourable in energy for Si-rich clusters. With the increase of m, the isotropic polarizability and average polarizability increase, the total binding energies generally decrease, the HOMO-LUMO gap and vertical ionization potential oscillate with increasing number of valence electrons, and their values with even valence electrons are larger than those with odd valence electrons. The atomic charges, IR and Raman properties are also reported. 相似文献
16.
ABSTRACT The geometrical structures of neutral and anionic Co m (borazine) n (m?=?1, 2; n?=?1–3) complexes have been determined by using density functional theory. The results indicate that most of the ground state structures for the complexes are similar to those of Co m (benzene) n , which might because borazine is isoelectronic and isostructural to benzene. The frontier molecular orbitals (FMOs) analyses show that their FMOs mainly arise from the 3d/4s electrons of cobalt atoms and the weak π-cloud of borazine molecule. Furthermore, the magnetic moments of complexes were studied and the results revealed that the Co atoms carry most of the magnetic moments. Comparing with the magnetic moment of a free Co atom (3.0μB), the magnetic moments of Co atom in most of Co m (borazine) n 0/- complexes are significantly reduced and even quenched except that the Co(borazine) remains unchanged. More importantly, there is a transition FM-to-AFM between neutral and anionic Co2(borazine)2. Finally, natural population analyses were performed to insightfully explore the reliable electronic structure properties. 相似文献
17.
Density functional theory has been applied to study the geometric structures, relative stabilities, and electronic properties of cationic [AunRb]+ and Aun + 1+ (n = 1–10) clusters. For the lowest energy structures of [AunRb]+ clusters, the planar to three-dimensional transformation is found to occur at cluster size n = 4 and the Rb atoms prefer being located at the most highly coordinated position. The trends of the averaged atomic binding energies, fragmentation energies, second-order difference of energies, and energy gaps show pronounced even–odd alternations. It indicated that the clusters containing odd number of atoms maintain greater stability than the clusters in the vicinity. In particular, the [Au6Rb]+ clusters are the most stable isomer for [AunRb]+ clusters in the region of n = 1–10. The charges in [AunRb]+ clusters transfer from the Rb atoms to Aun host. Density of states revealed that the Au-5d, Au-5p, and Rb-4p orbitals hardly participated in bonding. In addition, it is found that the most favourable channel of the [AunRb]+ clusters is Rb+ cation ejection. The electronic localisation function (ELF) analysis of the [AunRb]+ clusters shown that strong interactions are not revealed in this study. 相似文献
18.
《Chinese Journal of Physics (Taipei)》2018,56(4):1743-1755
We used the density functional theory (DFT) with the unrestricted B3LYP exchange-correlation potential and LanL2DZ basis sets to optimize the geometries of SbnAl and SbnAl±1 (n = 1–10) clusters. We mainly utilized Gaussian 03 W software to calculate the data. In order to find the most stable structure of each isomer, we calculated the total energy, the spin multiplicity (S), point group symmetry (PG), the electronic state (State), and the average bond lengths of Sb-Al bond and Sb-Sb bond (R1 and R2). Through the calculations and analysis of these data, we found the ground state structure of each group isomer. By discussing the average binding energy (Eb), fragmentation energy (Ef), and the second-order energy difference (Δ2E), the stabilities of the SbnAl (0,±1) clusters were studied. The results of the electron transfer show that the Sb4Al and Sb8Al clusters are different with the other neutral clusters. In order to study the electric properties of SbnAl (0,±1) clusters, the energy gap (Eg) between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), AEA, VDE, AIP, and VIP were calculated. Besides, the magnetic moment of the positive and negative clusters have the same effects when n = 2–9. 相似文献
19.
ABSTRACTWe report a theoretical investigation of neutral AuxAgyCuz and cationic AuxAgyCuz+ ternary clusters, for x?+?y+z?=?5 and 6. Our study is performed within density functional theory at the TPSSTPSS/SDD level. The geometries, chemical order, binding energy, mixing energy, second difference in the energy, adiabatic ionisation potential of these clusters are evaluated as a function of the whole concentration range. The most probable dissociation channels and the corresponding dissociation energies for the most stable clusters are also determined and discussed. 相似文献
20.