首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
针对浸没在流体中杆管柱间相互接触问题,基于嵌套网格技术,该文建立了环空流体内旋转杆柱与井筒间碰撞的数值求解方法.将环空流体域分为相互嵌套的子区域:背景网格和组件网格,推导了各嵌套区域流场边界传递信息的插值计算公式,采用分域方法对环空流体域与杆柱固体域耦合进行求解.通过静止流体中球形颗粒与壁面正、斜碰撞实验对比,验证该文数值方法的正确性.研究了不同流体黏度、杆柱旋转速度条件下杆柱与井筒的碰撞特性,结果表明:1)杆柱与井筒碰撞的碰撞力、速度随黏度增大而降低,即杆柱与井筒碰撞的剧烈程度与流体黏度负相关;2)随着杆柱旋转速度增大,杆柱与井筒的碰撞力、速度也增大,即杆柱与井筒碰撞的剧烈程度与转速正相关.  相似文献   

2.
蒸发弯月面附近存在复杂的流动结构.该文建立数值模型以精确模拟蒸发弯月面附近的传热传质过程并描绘液体中微小颗粒的运动轨迹.一方面,将弯月面上的蒸发、气相中的蒸汽扩散以及蒸发导致的界面冷却效果耦合求解.同时利用离散元方法(DEM)对颗粒在流体中的运动及其对流场的反作用进行耦合求解.通过与实验对比,该计算方法能够准确地描述弯月面附近的微颗粒运动轨迹.  相似文献   

3.
提出了非一致性界面热流固耦合作用整体求解的一种方法.热流体求解基于Boussinesq假设和不可压缩的Navier-Stokes方程.流体区域的运动采用任意Lagrange-Euler(ALE)方法.拟固体元方法实现流体区域的变形.使用几何非线性的热弹性动力学描述固体运动.为了保证界面处应力和传热的平衡,采用了基于Gauss积分点的数据交换方法,对热流固耦合最终形成的强非线性方程实现整体求解.数值实例分析表明该方法的健壮性和有效性.  相似文献   

4.
多介质大变形流动数值模拟的关键和难点是在精确追踪物质界面的同时又能够处理好流体的大变形运动.将MOF(moment-of-fluid)界面重构算法与多介质任意Lagrange-Euler方法(MMALE)相耦合,形成MOF-MMALE方法,并应用于多介质大变形流动问题的数值模拟研究.MOF-MMALE方法在传统的ALE方法基础上,允许计算网格边界跨过物质界面,允许存在混合网格,即一个网格内可以存在两种或两种以上物质;在混合网格内,利用MOF界面重构算法来确定物质界面的位置和方向.数值算例表明,MOF-MMALE方法是模拟多介质大变形流动的有效手段,并且具有较好的数值精度和界面分辨率.  相似文献   

5.
二元海水液滴对心碰撞过程数值模拟   总被引:1,自引:1,他引:0  
为研究海水循环冷却系统中液滴碰撞的基本规律及碰撞结果预测模型,采用流体体积函数(volume of fluid,VOF)方法捕捉两相交界面,利用动态网格自适应技术提高求解精度,对二元海水液滴的对心碰撞过程进行直接数值分析与模拟.首先对氮气中正十四烷液滴的碰撞实验进行数值模拟,验证了数值模型的可靠性.开展了常温常压下等尺寸二元海水液滴对心碰撞数值研究,分析了液滴碰撞过程流场结构及流动机理,研究了不同液滴直径和不同海水浓度对碰撞过程的影响规律,得到了聚合和自反分离两种碰撞结果类型以及二者的临界Weber数.总结出不同Ohnesorge数下海水液滴碰撞结果诺模图.  相似文献   

6.
在海洋平台、核电站、石油石化等工业中,海洋从式井组隔水管、换热器管束等在流体作用下,可能诱导管束振动过大,引起管束之间碰撞,从而导致管束失效.这是一种典型的管束振动与碰撞接触的流固耦合动力学问题.但管束与流体耦合动力学及其碰撞接触的研究成果还未见报道.该文针对管束振动与碰撞接触非线性动力学问题,以三维管束及圆筒流体域内的非定常流体为研究对象,不仅考虑流固耦合界面位移、速度协调以及载荷平衡条件,还考虑管束接触边界以及流体域耦合边界拓扑结构的改变,建立了圆筒流体域内管束振动与碰撞力学模型及算法.算例结果表明,在圆筒流体域内,弹性管束发生接触碰撞时,流体压力在管束接触点处相等,且流体在管束侧流面流动较快.  相似文献   

7.
由流体冲击载荷引起的流固耦合问题广泛存在于船舶与海洋工程领域.例如:在特定激励频率下载液货舱内流体的非线性运动引起对舱壁的砰击作用,进而可能影响液舱围护系统的安全性.由于此类流固耦合问题通常涉及多学科知识,且流体自由面的变化具有强非线性特征,对研究人员带来较大挑战.考虑到Lagrange类方法在处理结构和流体自由面大变形问题上的优势,基于MPS-FEM耦合方法开发了流固耦合求解器.其中,采用MPS方法来数值模拟流体场瞬态变化,FEM方法来分析结构场的变形问题.此外,该求解器采用了弱耦合的方式来实现流体场和结构场之间的数据传递.为了验证该方法在处理流固耦合问题上的可靠性,首先数值研究了溃坝泄洪流与弹性挡板之间的流固耦合标准算例,数值结果与实验标准结果能够较好地吻合.此后,采用该求解器数值研究了带刚性挡板和弹性挡板的液舱晃荡问题,对比分析了多种激励频率下两种挡板对液舱内流体运动及舱壁上冲击压力的抑制效果.  相似文献   

8.
本文介绍一套求解复杂流体模拟和优化控制问题的高可扩展并行算法.该算法基于非结构化网格,结合了加稳定化项的有限元空间离散方法、全隐的时间离散格式、多物理场全耦合的求解算法、区域分解算法及求解非线性系统的Newton-Krylov-Schwarz算法等多套先进算法.利用该算法,本文对多个实际工程应用中流体模拟和优化设计问题进行了测试,数值结果显示,该算法对本文研究的几类问题,具有很好的收敛性和并行可扩展性,当使用8192个处理器核求解规模超过两千万个网格单元的问题时,仍然具有超过40%的并行效率.  相似文献   

9.
由流体冲击载荷引起的流固耦合问题广泛存在于船舶与海洋工程领域.例如:在特定激励频率下载液货舱内流体的非线性运动引起对舱壁的砰击作用,进而可能影响液舱围护系统的安全性.由于此类流固耦合问题通常涉及多学科知识,且流体自由面的变化具有强非线性特征,对研究人员带来较大挑战.考虑到Lagrange类方法在处理结构和流体自由面大变形问题上的优势,基于MPS-FEM耦合方法开发了流固耦合求解器.其中,采用MPS方法来数值模拟流体场瞬态变化,FEM方法来分析结构场的变形问题.此外,该求解器采用了弱耦合的方式来实现流体场和结构场之间的数据传递.为了验证该方法在处理流固耦合问题上的可靠性,首先数值研究了溃坝泄洪流与弹性挡板之间的流固耦合标准算例,数值结果与实验标准结果能够较好地吻合.此后,采用该求解器数值研究了带刚性挡板和弹性挡板的液舱晃荡问题,对比分析了多种激励频率下两种挡板对液舱内流体运动及舱壁上冲击压力的抑制效果.  相似文献   

10.
无网格法是一种不需要生成网格就可模拟复杂形状流场计算的流体力学问题求解算法.为了提高基于Galerkin弱积分形式的无网格方法求解三维稳态对流扩散问题的计算效率,提出了在空间离散上采用基于凸多面体节点影响域的无网格形函数,并通过选取适当节点影响半径因子避免节点搜索问题,同时减少系统刚度矩阵带宽.计算中当节点影响因子为1.01时,无网格方法的形函数近似具有插值特性且本质边界条件的施加与有限元一样简单.三维立方体区域的稳态对流扩散数值算例表明:在保证计算精度的同时,采用凸多面体节点影响域的无网格方法比传统无网格方法最高可节省计算时间42%.因此从计算效率和精度考虑,在运用无网格方法求解三维问题时建议采用凸多面体节点影响域的无网格方法.  相似文献   

11.
基于光滑粒子动力学(smoothed particle hydrodynamics, SPH)方法,对三维Phan-Thien Tanner(PTT)黏弹性液滴撞击固壁面问题进行了数值模拟.为了有效地防止粒子穿透固壁,且缩减三维数值模拟所消耗的计算时间,提出了一种适合三维数值模拟的改进固壁边界处理方法.为了消除张力不稳定性问题,采用一种简化的人工应力技术.应用改进SPH方法对三维PTT黏弹性液滴撞击固壁面问题进行了数值模拟,精细地捕捉了液滴在不同时刻的自由面,讨论了PTT黏弹性液滴不同于Newton(牛顿)液滴的流动特征,分析了PTT拉伸参数对液滴宽度、高度和弹性收缩比等的影响.模拟结果表明,改进SPH方法能够有效而准确地描述三维PTT黏弹性液滴撞击固壁面问题的复杂流变特性和自由面变化特征.  相似文献   

12.
The main challenges in the numerical simulation of fluid–structure interaction (FSI) problems include the solid fracture, the free surface fluid flow, and the interactions between the solid and the fluid. Aiming to improve the treatment of these issues, a new coupled scheme is developed in this paper. For the solid structure, the Numerical Manifold Method (NMM) is adopted, in which the solid is allowed to change from continuum to discontinuum. The Smoothed Particle Hydrodynamics (SPH) method, which is suitable for free interface flow problem, is used to model the motion of fluids. A contact algorithm is then developed to handle the interaction between NMM elements and SPH particles. Three numerical examples are tested to validate the coupled NMM-SPH method, including the hydrostatic pressure test, dam-break simulation and crack propagation of a gravity dam under hydraulic pressure. Numerical modeling results indicate that the coupled NMM-SPH method can not only simulate the interaction of the solid structure and the fluid as in conventional methods, but also can predict the failure of the solid structure.  相似文献   

13.
Fully resolved fluid–solid coupling is explored with the gradient corrected weakly compressible SPH methodology being used to simulate an incompressible Newtonian fluid as well as being used to obtain the coupling force information required to accurately represent these interactions. Gradient correction allows for the application of the Neumann boundary condition required to describe the pressure fields at solid interfaces, as well as symmetry boundary conditions for velocity (where applicable) without the use of ghost or mirrored particles. A scaling study is performed by investigating the drag on an infinitely long cylinder at different smoothed particle hydrodynamics (SPH) resolutions, with finer resolution scales showing good correlation to other studies. The drag characteristics of several particle shapes and topologies are also investigated making use of both convex and non-convex particle shapes. Clear distinction for both the fluid and solid particle responses for the various solid particle shapes are observed. Boundary effects are also explored with results showing a strong responses to changing domain geometry aspect ratios. A many particle system with two different particle shapes are simulated to investigate bulk behaviour of the different solids falling under gravity in a fluid. All results presented in this paper are obtained from full 3D simulations.  相似文献   

14.
An efficient multigrid-FEM method for the detailed simulation of solid–liquid two phase flows with large number of moving particles is presented. An explicit fictitious boundary method based on a FEM background grid which covers the whole computational domain and can be chosen independently from the particles of arbitrary shape, size and number is used to deal with the interactions between the fluid and the particles. Since the presented method treats the fluid part, the calculation of forces and the movement of particles in a subsequent manner, it is potentially powerful to efficiently simulate real particulate flows with huge number of particles. The presented method is first validated using a series of simple test cases, and then as an illustration, simulations of three big disks plunging into 2000 small particles, and of sedimentation of 10,000 particles in a cavity are presented.  相似文献   

15.
A three-dimensional numerical simulation of DD (dual combustion and denitratior process) pre-calciner for cement production was conducted in this paper. In Euler coordinate system, the fluid phase is expressed with RNG kε two-equation model and the solid phase is expressed with particle stochastic trajectory model in Lagrange coordinate system. Four mixture fractions are deduced in this article to simulate the gas compositions. The results of numerical simulation predicted the burn-out ratio of coal and the decomposition ratio of limestone particles along with particle trajectories. It also supplied theoretical foundation for industrial analysis of the coupling relation between coal combustion and calcium carbonate decomposition.  相似文献   

16.
In scientific computing there is a great interest in numerical simulation of fluid-structure interaction (FSI) problems. Within this work a numerical approach to simulate fluid-structure interactions between elastic structures and weakly incompressible fluids is developed. For the fluid part and the solid part the Smoothed Particle Hydrodynamics method (SPH) and the Finite Element Method (FEM) are used, respectively. To transfer the resulting reaction forces from the fluid particles onto the structure's surface two methods are implemented, investigated and compared. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
In this Note, we present a numerical method to simulate the motion of solid particles in a moving viscous fluid. The fluid is supposed to be Newtonian and incompressible. The Arbitrary Lagrangian Eulerian formulation of the Navier-Stokes equations is discretized at the first order in time, as are the equations for the solid bodies. The advection term is taken into account by a method of characteristics. The variational formulation of the coupled problem is then established, and the boundary integrals expressing the hydrodynamical forces are eliminated. By introduction of an appropriate Finite Element approximation, a symmetric linear system is obtained. This system is solved by an inexact Uzawa algorithm, preconditionned by a Laplace operator with Neumann boundary conditions on the pressure. Numerical results are presented, for 2 and 100 particles: The Reynolds number in both cases is of the order of 100.  相似文献   

18.
We introduce and analyze the coupling of a mixed finite element and a boundary element for a three‐dimensional time‐harmonic fluid–solid interaction problem. We consider a formulation in which the Cauchy stress tensor and the rotation are the main variables in the elastic structure and use the usual pressure formulation in the acoustic fluid. The mixed variational formulation in the solid is completed with boundary integral equations relating the Cauchy data of the acoustic problem on the coupling interface. A crucial point in our formulation is the stabilization technique introduced by Hiptmair and coworkers to avoid the well‐known instability issue appearing in the boundary element method treatment of the exterior Helmholtz problem. The main novelty of this formulation, with respect to a previous approach, consists in reducing the computational domain to the solid media and providing a more accurate treatment of the far field effect. We show that the continuous problem is well‐posed and propose a conforming Galerkin method based on the lowest‐order Arnold–Falk–Winther mixed finite element. Finally, we prove that the numerical scheme is convergent with optimal order.Copyright © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 1211–1233, 2014  相似文献   

19.
In this work, a corrected smoothed particle hydrodynamics (CSPH) method is proposed and extended to the numerical simulation of transient viscoelastic fluid flows due to that its approximation accuracy in solving the Navier–Stokes equations is higher than that of the smoothed particle hydrodynamics (SPH) method, especially near the boundary of the domain. The CSPH approach comes with the idea of combining the SPH approximation for the interior particles with the modified smoothed particle hydrodynamics (MSPH) method for the exterior particles, this is because that the later method has higher accuracy than the SPH method although it also needs more computational cost. In order to show the validity of CSPH method to simulate unsteady viscoelastic flows problems, the planar shear flow problems, including transient Poiseuille, Couette flow and transient combined Poiseuille and Couette flow for the Oldroyd-B fluid are solved and compared with the analytical and SPH results. Subsequently, the general viscoelastic fluid based on the eXtended Pom–Pom (XPP) model is numerically investigated and the viscoelastic free surface phenomena of impacting drop are simulated by the CSPH for its extended application and the purpose of illustrating the ability of the proposed method. The numerical results are presented and compared with available solutions, which shows a very good agreement. All the numerical results show the higher accuracy and better stability of the CSPH than the SPH, especially for larger Weissenberg numbers.  相似文献   

20.
M. Poarnik  L. &#x;kerget 《PAMM》2002,1(1):371-372
The numerical scheme based on the boundary domain integral method (BDIM) for the numerical simulation of twophase two‐component flows is presented. A program is being developed to model the hydrodynamics of fluidized bed systems by using the Eulerian approach in terms of velocity‐vorticity variables formulation. With the vorticity vector both phases motion computation scheme is partitioned into its kinematic and kinetic aspect. Influence of the drag coefficient on the two‐phase two‐component flow field is studied on the two‐phase gas‐solid particles vertical channel flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号