首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe optimized parallel tempering simulations of the 46-residue B-fragment of protein A. Native-like configurations with a root-mean-square deviation of approximately 3 A to the experimentally determined structure (Protein Data Bank identifier 1BDD) are found. However, at biologically relevant temperatures such conformations appear with only approximately 10 % frequency in our simulations. Possible shortcomings in our energy function are discussed.  相似文献   

2.
The proximity formulae of Brink and Stancu are applied to folding potentials. A numerical study is made for the case of single folding potentials with Saxon-Woods form factors. We find that a proximity formula is accurate to 1–2% at separations of the order of the radius of the Coulomb barrier and that first order corrections due to finite curvature are important. The approximations involved are discussed.  相似文献   

3.
A coarse-grained off-lattice model that is not biased in any way to the native state is proposed to fold proteins. To predict the native structure in a reasonable time, the model has included the essential effects of water in an effective potential. Two new ingredients, the dipole-dipole interaction and the local hydrophobic interaction, are introduced and are shown to be as crucial as the hydrogen bonding. The model allows successful folding of the wild-type sequence of protein G and may have provided important hints to the study of protein folding.  相似文献   

4.
It is pointed out that the failure of the single-folding model to predict the correct real part of heavy-ion optical potentials is partially due to the omission of effects arising from any density dependence present in the underlying nucleon-nucleon interaction. An estimate is made of the error introduced in typical calculations.  相似文献   

5.
Experimental studies of protein folding processes are frequently hampered by the fact that only low resolution structural data can be obtained with sufficient temporal resolution. Molecular dynamics simulations offer a complementary approach, providing extremely high resolution spatial and temporal data on folding processes. The effectiveness of such simulations is currently hampered by continuing questions regarding the ability of molecular dynamics force fields to reproduce the true potential energy surfaces of proteins, and ongoing difficulties with obtaining sufficient sampling to meaningfully comment on folding mechanisms. We review recent progress in the simulation of three common model systems for protein folding, and discuss how recent advances in technology and theory are allowing protein folding simulations to address their current shortcomings.  相似文献   

6.
7.
8.
Determining protein folding kinetics and thermodynamics from all-atom molecular dynamics (MD) simulations without using experimental data represents a formidable scientific challenge because simulations can easily get trapped in local minima on rough free energy landscapes. This necessitates the computation of multiple simulation trajectories, which can be independent from each other or coupled in some manner, as, for example, in the replica exchange MD method. Here we present results obtained with a new analysis tool that allows the deduction of faithful kinetics data from a heterogeneous ensemble of simulation trajectories. The method is demonstrated on the decapeptide Chignolin for which we predict folding and unfolding time constants of 1.0 +/- 0.3 and 2.6 +/- 0.4 micros, respectively. We also derive the energetics of folding, and calculate a realistic melting curve for Chignolin.  相似文献   

9.
M.A. Moret 《Physica A》2011,390(17):3055-3059
The major factor that drives a protein toward collapse and folding is the hydrophobic effect. At the folding process a hydrophobic core is shielded by the solvent-accessible surface area of the protein. We study the fractal behavior of 5526 protein structures present in the Brookhaven Protein Data Bank. Power laws of protein mass, volume and solvent-accessible surface area are measured independently. The present findings indicate that self-organized criticality is an alternative explanation for the protein folding. Also we note that the protein packing is an independent and constant value because the self-similar behavior of the volumes and protein masses have the same fractal dimension. This power law guarantees that a protein is a complex system. From the analyzed data, q-Gaussian distributions seem to fit well this class of systems.  相似文献   

10.
The prediction of the three-dimensional native structure of proteins from the knowledge of their amino acid sequence, known as the protein folding problem, is one of the most important yet unsolved issues of modern science. Since the conformational behaviour of flexible molecules is nothing more than a complex physical problem, increasingly more physicists are moving into the study of protein systems, bringing with them powerful mathematical and computational tools, as well as the sharp intuition and deep images inherent to the physics discipline. This work attempts to facilitate the first steps of such a transition. In order to achieve this goal, we provide an exhaustive account of the reasons of enormous relevance underlying the protein folding problem and summarize the present-day status of the methods aimed at solving it. We also provide an introduction to the particular structure of these biological heteropolymers, and we physically define the problem stating the assumptions behind this (commonly implicit) definition. Finally, we review the ‘special flavour’ of statistical mechanics that is typically used to study the astronomically large phase spaces of macromolecules. Throughout the whole work, much material that is found scattered in the literature has been put together here to improve comprehension and to serve as a handy reference.  相似文献   

11.
Physics of protein folding   总被引:3,自引:0,他引:3  
Protein physics is grounded on three fundamental experimental facts: protein, this long heteropolymer, has a well defined compact three-dimensional structure; this structure can spontaneously arise from the unfolded protein chain in appropriate environment; and this structure is separated from the unfolded state of the chain by the “all-or-none” phase transition, which ensures robustness of protein structure and therefore of its action. The aim of this review is to consider modern understanding of physical principles of self-organization of protein structures and to overview such important features of this process, as finding out the unique protein structure among zillions alternatives, nucleation of the folding process and metastable folding intermediates. Towards this end we will consider the main experimental facts and simple, mostly phenomenological theoretical models. We will concentrate on relatively small (single-domain) water-soluble globular proteins (whose structure and especially folding are much better studied and understood than those of large or membrane and fibrous proteins) and consider kinetic and structural aspects of transition of initially unfolded protein chains into their final solid (“native”) 3D structures.  相似文献   

12.
It is shown that the topological concepts developed previously for the analysis of conformations for strips, double-stranded DNA helices, or elastic thin rods can fruitfully be applied to the study of tertiary folding for complicated protein structures. The topological characteristics determine the integral chirality of proteins and play an important role in the mechanisms of folding and molecular recognition.  相似文献   

13.
14.
江凡  李南 《中国物理》2007,16(2):392-404
One of the long-standing controversial arguments in protein folding is Levinthal's paradox. We have recently proposed a new nucleation hypothesis and shown that the nucleation residues are the most conserved sequences in protein. To avoid the complicated effect of tertiary interactions, we limit our search for structural codes to the nucleation residues. Starting with the hypotheses of secondary structure nucleation and conservation of residues important for folding, we have analysed 762 folds classified as unique by SCOP. Segments of 17 residues around the top 20% conserved amino acids are analysed, resulting in approximately 100 clusters each for the main secondary structure classes of helix, sheet and coil. Helical clusters have the longest correlation range, coils the shortest (four residues). Strong specific sequence-structure correlation is observed for coil but not for helix and sheet, suggesting a mapping relationship between the sequence and the structure for coil. We propose that the central sequences in these clusters form `structural codes', a useful basis set for identifying nucleation sites, protein fragments stable in isolation, and secondary structural patterns in proteins (particularly turns and loops).  相似文献   

15.
16.
A coarse-grained model of a random polypeptide chain, with only discrete torsional degrees of freedom and Hookean springs connecting pairs of hydrophobic residues is shown to display stretched exponential relaxation under Metropolis dynamics at low temperatures with the exponent beta approximately 1/4, in agreement with the best experimental results. The time dependent correlation functions for fluctuations about the native state, computed in the Gaussian approximation for real proteins, have also been found to have the same functional form. Our results indicate that the energy landscape exhibits universal features over a very large range of energies and is relatively independent of the specific dynamics.  相似文献   

17.
It is shown that density dependence in the interaction does effect the consistency of the results obtained in folding calculations of nucleon-nucleus and nucleus-nucleus potentials. A modified density dependent version of the new G matrix interaction of Bertsch et al. gives reasonable results for both.  相似文献   

18.
19.
20.
The availability of the complete genomic sequences of many species, including human, has raised enormous expectations in medicine, pharmacology, ecology, biotechnology and forensic sciences. However, knowledge is only a first step toward understanding, and we are only at the early stage of a scientific process that might lead us to satisfy all the expectations raised by the genomic projects. In this review I will discuss the present status of computational methods that attempt to infer the unique three-dimensional structure of proteins from their amino acid sequences. Although this problem has been defined as the “holy grail” of biology, it represents only one of the many hurdles in our path towards the understanding of life at a molecular level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号