首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The energy levels and electronic structure of the X2Σ+, B2Σ+ and 32Σ+ states of SiO+ are studied using ab initio configuration interaction (CI) calculations at and around their equilibrium internuclear distances R e. Spectroscopic constants and the vertical excitation energy from the SiO+ X2Σ+ state are predicted for the 32Σ+ state. Based on the calculated CI wavefunctions, avoided crossings of the potential energy curve for the 32Σ+ state and a near-degeneracy effect in the avoided crossing region are examined. The effects of the mixing of excited configuration state functions in the total electronic wavefunctions for the 1–3 2Σ+ states are investigated by analysing correlation energies in terms of the contributions from classes of excited configurations. The importance of both the near-degeneracy effect and the correlation energy effect in describing correctly the electronic structure of the 3 2Σ+ state in the neighbourhood of its R e is discussed.  相似文献   

2.
A method is presented for approximating the effect of core electrons by a pseudopotential which is an extension of one previously presented by Dixon and Hugo. The pseudopotential is constructed in a fully ab initio manner from atomic SCF calculations. It is non-local in both radial and angular coordinates, but its matrix elements are none the less easy to evaluate. The method has been implemented within a multi-structure valence-bond framework. The approximations arising from the use of finite basis sets, both for the pseudopotential and for the valence wavefunction, inevitably lead to errors in calculated energies. However, these errors are largely atomic in origin. Thus, in addition to ab initio calculations we also use empirical atomsin-molecules corrections to minimize both basis set errors and atomic correlation errors. These method are applied to potential curves for 21 electronic states of the SO molecule. Comparison is made of the curves calculated using the ab initio multi-structure valence-bond method without and with the atoms-in-molecules corrections. The potential energy curves of three, previously unobserved, bound electronic states of SO are calculated. We estimate that these states, 1Σ-, 3Δ and 3Σ+, lie in the region of 3·2 to 3·4 eV above the ground state.  相似文献   

3.
ABSTRACT

Using ab initio quantum chemistry method, the feasibility of laser cooling ScO was investigated. The ground state Χ2Σ+ and low-lying excited states Α2Π, Α′2Δ are calculated at the multi-reference configuration interaction (MRCI) level of theory. The calculated spectroscopic constants are in good agreement with available theoretical and experimental results. At the MRCI level of theory with Davidson correction, the permanent dipole moments of the Χ2Σ+ and Α2Π states of ScO are also calculated. The highly diagonally distributed Franck–Condon factors and shorter radiative lifetime for the Α2Π→Χ2Σ+ transition are calculated with the corresponding potential energy curves and transition dipole moment. Although there is an intermediate state Α′2Δ, the loss will be dominated by branching to the intermediate electronic state Α′2Δ at a level of η < 1.4 × 10?4. These results demonstrate the probability of laser cooling of ScO, and we provide a promising laser-cooling scheme for ScO molecule.  相似文献   

4.
M. Jungen  Ch. Jungen 《Molecular physics》2015,113(15-16):2333-2343
More than 80 excited electronic states of the hydrohelium ion HeH+ of 1, 3Σ+, 1, 3Π, 1, 3Δ, 1, 3Φ and 1, 3Γ symmetry have been calculated ab initio up to n = 6 for internuclear distances ranging from 0.5 to 100 bohr. The computations involve a configuration interaction (CI) treatment based on a home-made suite of programs that uses special basis sets designed for the representation of molecular Rydberg states. The results are compared with previous computations where these are available (up to n = 4), and it is found that except for the very lowest excited states, the present energies are consistently lower than those obtained previously, with an average lowering corresponding to several hundred cm?1. It is shown that with the exception of its ground state, HeH+ is an effective one-electron system having an overall electronic structure similar to H+2. The interaction of the excited electron with the He+ 1s core electron causes small singlet–triplet splittings to appear and ?-mixing interactions to occur, that are not present in H+2.  相似文献   

5.
Many molecules with an even number of electrons belong to open-shell systems due to π 2 ground state electronic configuration. This configuration gives rise to three low-lying states X 3 Σ , a Δ 1 and b 1 Σ +. The inclusion of these target states in a trial wave function of the entire scattering system have important implications in the resonances that may be detected in these open-shell molecules. Various molecules like O2, PX (X = H and halogens), SO, Si2, BF have π 2 ground state configuration. The R-matrix method is a well established ab initio formalism to calculate differential, integral and momentum-transfer cross sections for the elastic scattering of electrons by molecules. We have calculated these cross sections for PH and SO molecules in the incident electron energy range 0–10 eV. The results are obtained by using the R-matrix method in which the closecoupling expansion of the wave function of the scattering system includes only the ground state. This target state is described by configuration interaction wave function that includes correlation effects. The cross section for electron impact on PH and SO are presented.  相似文献   

6.
Emission spectra of WO have been observed in the 4000-35 000 cm−1 region using a Fourier transform spectrometer. Molecules were produced by exciting a mixture of WCl6 vapor and He in a microwave discharge lamp. A 3Σ state has been assigned as the ground state of WO based on a rotational analysis of the observed bands and ab initio calculations. After rotational analysis, a majority of strong bands have been classified into three groups. Most of the transitions belonging to the first group have an Ω = 0+ state as the lower state while the bands in the second group have an Ω′′ = 1 state as the lower state. These two lower states have been assigned as X0+ and X1 spin components of the X3Σ ground state of WO. The third group consists of additional bands interconnected by common vibrational levels involving some very low-lying states. The spectroscopic properties of the low-lying electronic states have been predicted from ab initio calculations. The details of the rotational analysis are presented and an attempt has been made to explain the experimental observations in the light of the ab initio results.  相似文献   

7.
The electronic structure of CrF and CrCl in X 6Σ+, 6Π, 6Δ, A6Σ+, 4Σ+, 4Π, and 4Δ states that correlate with the low lying 6S, 6D, and 4D states of Cr+ have been studied, using large atomic natural orbital (ANO) basis sets and a variety of ab initio methods, including multi-reference configuration interaction (MRCI) and coupled cluster with perturbative triples (RCCSD(T)). We include scalar relativistic effects perturbatively and also explore the consequence of correlating the 3s and 3p electrons on the transition metal. We report T e, R ee, as well as dipole moments, bond energies, and charge distributions and compare with the available experimental data as well as previous theoretical results.  相似文献   

8.
9.
The electronic structure of the TiC molecule was examined using three types of multi-reference single- and double-excitation configuration interaction (MRSDCI) calculations with highly extended basis sets. Multi-reference coupled pair approximation (MRCPA) was applied after the MRSDCI calculations that included core—valence and core—core correlation in addition to the valence correlation (v-c-c CI). From the results of the most accurate calculation with MRCPA (v-c-c CPA) it was concluded that a 1Σ+ state is the ground state, despite previous calculations that suggested a 3Σ+ state with a 1Σ+ state lying only slightly above it. The 1Σ+ state is more highly correlated than the 3Σ+ state, and it was found that use of a size-consistent method is necessary to predict the relative stability accurately. The study evaluated the spectroscopic constants and considered the effect of the core (Ti 3p) correlation on these parameters. By taking the core correlation effect into account, the estimation of the dissociation energy (D e) was improved dramatically; D e obtained through v-c-c CPA was 4.457eV for the 1Σ+ ground state, which agrees well with the experimental value (the latest being 4.35 ± 0.31 eV).  相似文献   

10.
BH分子基态和激发态解析势能函数和光谱性质   总被引:3,自引:0,他引:3       下载免费PDF全文
王新强  杨传路  苏涛  王美山 《物理学报》2009,58(10):6873-6878
运用多参考组态相互作用的方法和Dunning’s相关调和基函数并含扩散基的大基组aug-cc-pV5Z,获得了BH分子基态(X1Σ+)和6个电子激发态(a3П, A1П, B1Σ+, b3Σ+, b3 关键词: 势能曲线 解析势能函数 多参考组态相互作用方法 光谱常数  相似文献   

11.
ABSTRACT

Potential energy curves (PECs) of the lowest electronic states of the potassium mono-sulphide KS have been determined with highly correlated ab initio calculations, using internally contracted multi reference interaction configuration methods including Davidson correction (MRCI?+?Q) with and without considering spin-orbit effects. For the three low-lying bound states, we report a set of spectroscopic parameters including equilibrium distances, dissociation energies, vibrational and rotational constants. The effects of spin-orbit-induced changes on these parameters are also discussed. An analysis of the properties of the three bound states, X2Π, 12Σ+ and 22Π, illustrates the common characteristics of the whole series of compounds in the MS family (M?=?Li, Na, K, Rb, Cs). Indeed, the shapes of the PECs of these bound states are strongly affected by the interactions between the two ionic states, 2Σ+ and 2Π, correlating at large internuclear separations (RMS) to the first ionic dissociation limit [M+?+?S?] and the electronic states correlating to the three/four lowest dissociation limits. The spectroscopy of these low-lying electronic states and the lifetime of their vibrational levels are thus affected by the spin-orbit interactions which are mainly related to the S atom and consequently common to all alkali-metal mono-sulphides.  相似文献   

12.
By employing ab initio quantum chemistry method, we investigate the feasibility of laser cooling InF molecule. Four low-lying electronic states (X1Σ+, C1Π, 3Π and 23Π) of InF have been calculated using the multi-reference configuration interaction (MRCI) method. The spin-orbit coupling effects are also taken into account in the electronic structure computation at the MRCI level. The highly diagonal Franck-Condon factors for C1Π → X1Σ+ transitions are estimated. The radiative lifetime of the C1Π (v′ = 0) state is about 2.22 ns, which is found to be enough short for rapid laser cooling. Though the cooling wavelength of InF is located in the short-wavelength ultraviolet light (UVC), a frequency quadrupled Ti: sapphire laser (189–235 nm) could be capable of generating laser transition wavelength of InF. Furthermore, the C1Π → X1Σ+ transitions perhaps can be followed by the B3Π1 → X1Σ+0+ transitions to attain a lower Doppler temperature. Meanwhile, for achieving quasi-closed transition cycle of InF molecule, we investigate the hyperfine structure of the lowest state X1Σ+. Overall, the present results indicate the possibility of laser cooling InF molecules.  相似文献   

13.
This paper calculates the potential energy curves (PECs) of the ground state (X 1 Σ + ) and excited state (A 1 Σ + ) of ScN molecule by multireference configuration interaction method. The correct character of the PECs has been gripped while they had been improperly reported in the literature. Based on the PECs, the spectroscopic parameters and vibrational energy levels are determined, and compared with experimental data and other theoretical works available at the present.  相似文献   

14.
Realistic two-valued potential energy surfaces for the reaction C(3P) + CH(X2Π) → C2 + H have been constructed from a set of high level ab initio data describing the first two 2A′ electronic states of the C2H system. These states have linear equilibrium configurations, known as the X 2Σ+ and A2Π states, and are coupled by a conical intersection. They lead to the formation of C2(X1Σ+ g) and C2(a3Πu) considering an adiabatic dissociation process. The ab initio calculations are of the multireference configuration interaction variety and were carried out using a polarized triple-zeta basis set. Using the ab initio adiabatic energies and the matrix elements of the dipole moment, a 2 × 2 diabatic representation of the electronic Hamiltonian was built. Each element of this Hamiltonian matrix was expressed within the double many-body expansion (DMBE) scheme which is based, in this case, on the extended Hartree-Fock approximate correlation energy model (EHFACE). The analytical adiabatic potential energy surfaces are then obtained as the eigenvalues of this matrix, and display correctly the Σ/Π conical intersection. Moreover, the non-adiabatic couplings given by our analytical model are compared with the ab initio ones, and good qualitative agreement is observed.  相似文献   

15.
The first three electronic states of the C2Br radical, correlating at linear geometries with 2Σ+ and 2Π states, have been studied ab initio, using Multi Reference Configuration Interaction techniques. The electronic ground state is found to have a bent equilibrium geometry, RCC=1.2621Å, R CBr=1.7967Å, ∠ CCBr=156.1°, with a very low barrier to linearity. Similarly to the valence isoelectronic radicals C2F and C2Cl, this anomalous behaviour is attributed to a strong three-state non-adiabatic electronic interaction. The Σ ,Π1/23/2 vibronic energy levels and their absolute infrared absorption intensities at a temperature of 5 K have been calculated for the 12 C12 C79Br isotopomer, to an upper limit of 2000 cm?1, using ab initio diabatic potential energy and dipole moment surfaces and a recently developed variational method.  相似文献   

16.
王庆美  任廷琦  朱吉亮 《物理学报》2009,58(8):5266-5269
采用量子力学从头计算方法,运用单双取代二次组态相互作用和单双(三)取代二次组态相互作用并结合LanL2DZ基组,计算优化了BiH(D,T)分子基态X3Σ的结构和离解能.并采用最小二乘法拟合改进的Murrell-Sorbie 函数得到了相应的势能函数.计算得到的光谱常数与实验光谱数据符合很好. 关键词: BiH(D T)分子基态 势能函数 Murrell-Sorbie函数  相似文献   

17.
王庆美  任廷琦  朱吉亮 《物理学报》2009,58(8):5270-5273
采用量子力学从头计算方法,运用单双取代二次组态相互作用和单双(三)取代二次组态相互作用并考虑基组6-311++G(3df,3pd)计算优化了GaH(D,T)分子基态X1Σ+的结构和离解能.并采用最小二乘法拟合改进的Murrell-Sorbie函数得到了相应的势能函数.计算得到的光谱常数与实验光谱数据符合得很好. 关键词: GaH(D T)分子基态 势能函数 Murrell-Sorbie函数  相似文献   

18.
Electronic spectrum of astrophysically important molecule magnesium hydride (MgH) has been studied using configuration interaction methodology excluding and including spin–orbit coupling. Potential energy curves of several spin-independent (Λ?S) electronic states have been constructed and spectroscopic constants of low-lying bound Λ?S states within 8.2 eV of term energy are reported in the first stage of calculations. The X2Σ+ is identified as the ground state in the Λ?S level. In the subsequent stage, the spin–orbit interaction has been incorporated and its effects on the potential energy curves and spectroscopic features of different electronic states of the species have been investigated. The X2Σ+1/2 is identified as the spin–orbit (Ω) ground state of the species. Transition moments of several dipole-allowed transitions are computed in both the stages and radiative lifetimes of the corresponding excited states are computed. Electric dipole moments (µ) for a number of low-lying bound Λ?S states as well as several low-lying Ω-states are also calculated in the present study.  相似文献   

19.
The low-lying electronic states of the molecule FeC have been investigated by performing all electron ab initio multi-configuration self-consistent-field (CASSCF) and multi reference configuration interaction (MRCI) calculations. The relativistic corrections for the one-electron Darwin contact term and the relativistic mass-velocity correction have been determined in perturbation calculations. The electronic structure of the FeC molecule is interpreted as antiferromagnetic couplings of the localized angular momenta of the ions and resulting in a triple bond in the valence bond sense. The electronic ground state is confirmed as being . The spectroscopic constants for the ground state and eleven excited states have been derived from the results of the MRCI calculations. The spectroscopic constants for the ground state have been determined as and ,and for the low-lying state as and . The values for the ground state agree well with the available experimental data. The FeC molecule is polar with charge transfer from Fe to C. The dipole moment has been determined as in the ground state and as 1.51 D in the state. From the results of the MRCI calculations the dissociation energy, , is determined as 2.79 eV, and D0 as 2.74 eV. Received: 2 October 1998 / Received in final form: 30 March 1999  相似文献   

20.
The interaction of small Pt-Re clusters with H2 is reported here through ab initio multicon-figuration self-consistent field (MC-SCF) calculations, plus extensive multireference configuration interaction (MR-CI), variational and perturbative calculations. These calculations provide a cluster model for the activation of hydrogen by Pt-Re bimetallic catalysts. It was found that the 6S(5d56s2) Re atom ground state needs an important activation to induce very weak capture of separated hydrogen atoms, whereas in the lowest excited states the activation energies are small or zero, with a very reasonable depth of well. The four lowest states of Pt-Re were found to be 4 Σ+, 6Πyz, Σ + and 6Πxz. Pt-Re interaction with H2 has been studied from both metal ‘sides’. It was established that Pt-Re with the platinum side in the ground electronic 4Σ+ state and in the lowest 6Π+ excited states is able to capture H2 molecules without activation, whereas in the 6Πyz and 6Πxz excited states there is no capture. The rhenium side of Pt-Re in its four lowest states considered cannot capture the H2 molecule. The interaction of Pt2-Re with H2 was studied also. For the ground 2B2 electronic state and the low lying 2A1 electronic state the platinum moiety can spontaneously capture and break H2. The rhenium side of Pt2-Re(B2), however, can capture H2 only after surmounting a small barrier, and the excited Pt2-Re(2A1) can spontaneously capture H2. For Pt2-Re in its low lying 4A1 electronic state both metal sides capture and break H2 after surmounting a small barrier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号