首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Frank J. Owens 《Molecular physics》2013,111(12):1527-1531
Density functional theory (DFT) employing the local spin density approximation and including correlation functionals is used to show that increasing the boron content relative to the nitrogen content in boron nitride nanoribbons can significantly reduce the band gap making the ribbons semiconducting. Armchair ribbons, but not zigzag ribbons, having excess borons are predicted to have a more stable optimized triplet structure than the optimized singlet structure. The triplet structure is predicted to have a higher density of states at the top of the valence band near Fermi level for the spin down state indicating it could be a ferromagnetic semiconductor. The results suggest a possible new approach to developing ferromagnetic semiconductors.  相似文献   

2.
Using the first-principles calculations, electronic properties for the F-terminated AlN nanoribbons with both zigzag and armchair edges are studied. The results show that both the zigzag and armchair AlN nanoribbons are semiconducting and nonmagnetic, and the indirect band gap of the zigzag AlN nanoribbons and the direct band gap of the armchair ones decrease monotonically with increasing ribbon width. In contrast, the F-terminated AlN nanoribbons have narrower band gaps than those of the H-terminated ones when the ribbons have the same bandwidth. The density-of-states (DOS) and local density-of-states (LDOS) analyses show that the top of the valence band for the F-terminated ribbons is mainly contributed by N atoms, while at the side of the conduction band, the total DOS is mainly contributed by Al atoms. The charge density contour analyses show that Al–F bond is ionic because the electronegativity of F atom is much stronger for F atom than for Al atom, while N–F bond is covalent because of the combined action of the stronger electronegativity and the smaller covalent radius.  相似文献   

3.
《Physics letters. A》2014,378(5-6):565-569
The band-gap modulation of zigzag and armchair graphane-like SiC nanoribbons (GSiCNs) under uniaxial elastic strain is investigated using the density functional theory. The results show that band gap of both structures all decreases when being compressed or tensed. In compression, both zigzag and armchair GSiCNs are semiconductors with a direct band gap. However, in tension, the armchair GSiCNs undergo a direct-to-indirect band-gap transition but the zigzag GSiCNs still have a direct band gap. These results are also proved by HSE06 method. This implies a potential application of the graphane-like SiC nanoribbons in the future pressure sensor and optical electronics nanodevices.  相似文献   

4.
Density Functional Theory is used to investigate the effect of altering the B/N ratio and carbon doping on the electronic and magnetic structure of zigzag, (7, 0) and armchair (5, 5) boron nitride nanotubes. The calculations indicate that increasing the boron content relative to the nitrogen content significantly reduces the band gap to a value typical of a semiconductor. Calculations of carbon doped semiconducting BN tubes, which have more boron atoms than nitrogen atoms have a net spin and a difference in the density of states at the valence band between the spin up and spin down state.  相似文献   

5.
We study quantum transport in honeycomb lattice ribbons with either armchair or zigzag edges. The ribbons are coupled to semi-infinite linear chains serving as the input and output leads and we use a tight-binding Hamiltonian with nearest-neighbor hops. The input and output leads are coupled to the ribbons through bar contacts. In narrow ribbons we find transmission gaps for both types of edges. The appearance of this gap is due to the enhanced quantum interference coming from the multiple channels in bar contacts. The center of the gap is at the middle of the band in ribbons with armchair edges. This particle-hole symmetry is because bar contacts do not mix the two sublattices of the underlying bipartite honeycomb lattice when the ribbon has armchair edges. In ribbons with zigzag edges the gap center is displaced to the right of the band center. This breakdown of particle-hole symmetry is the result of bar contacts now mixing the two sublattices. We also find transmission oscillations and resonances within the transmitting region of the band for both types of edges. Extending the length of a ribbon does not affect the width of the transmission gap, as long as the ribbon’s length is longer than a critical value when the gap can form. Increasing the width of the ribbon, however, changes the width of the gap. In ribbons with zigzag edges the gap width systematically shrinks as the width of the ribbon is increased. In ribbons with armchair edges the gap is not well-defined because of the appearance of transmission resonances. We also find only evanescent waves within the gap and both evanescent and propagating waves in the transmitting regions.  相似文献   

6.
The size dependent electronic properties of armchair graphene nanoribbons (AGNR) with Ni doped atoms have been investigated using spin-unrestricted density functional theory. We predict antiferromagnetic (AFM) ground states for Ni-termination and one edge Ni-doping. The computed formation energy reveals that one edge Ni-terminated AGNR are energetically more favourable as compared to pristine ribbons. One edge substitutional doping is energetically more favourable as compared to centre doping by ∼1 eV whereas both edge doping is unfavourable. The bond length of substitutional Ni atoms is shorter than that of Ni adsorption in GNR, implying a stronger binding for substitutional Ni atoms. It is evident that binding energy is also affected by the coordination number of the foreign atom. The results show that Ni-interaction perturbs the electronic structure of the ribbons significantly, causing enhanced metallicity for all configurations irrespective of doping site. The band structures reveal the separation of spin up and down electronic states indicating towards the existence of spin polarized current in Ni-terminated and one edge doped ribbons. Our calculation predicts that AGNR containing Ni impurities can play an important role for the fabrication of spin filters and spintronic devices.  相似文献   

7.
Energy gaps in graphene nanoribbons   总被引:5,自引:0,他引:5  
Based on a first-principles approach, we present scaling rules for the band gaps of graphene nanoribbons (GNRs) as a function of their widths. The GNRs considered have either armchair or zigzag shaped edges on both sides with hydrogen passivation. Both varieties of ribbons are shown to have band gaps. This differs from the results of simple tight-binding calculations or solutions of the Dirac's equation based on them. Our ab initio calculations show that the origin of energy gaps for GNRs with armchair shaped edges arises from both quantum confinement and the crucial effect of the edges. For GNRs with zigzag shaped edges, gaps appear because of a staggered sublattice potential on the hexagonal lattice due to edge magnetization. The rich gap structure for ribbons with armchair shaped edges is further obtained analytically including edge effects. These results reproduce our ab initio calculation results very well.  相似文献   

8.
Examining the band structure of graphite ribbons with a typical edge shapes of armchair or zigzag, we find that minute graphite in a nanometer scale shows a striking contrast in the π electronic states depending on the edge shape. A wide armchair ribbon can reproduces the electronic state of graphite, but a zigzag ribbon shows a pair of partly flat bands which gives a remarkable peak of density of states at the Fermi level. We derive the analytic solution of this peculiar Edge State, disclosing the puzzle of its emergence.  相似文献   

9.
Structure and electronic properties of GaN nanotubes (GaNNTs) are investigated by using ab initio density functional theory. By full optimization, the optimized structures (bond-lengths and angles between them) of zigzag GaNNTs (n,0) and armchair GaNNTs (n,n) (4<n<11) are calculated. The difference between nitrogen ring diameter and gallium ring diameter (buckling distance) and semiconducting energy gap in term of diameter for zigzag and armchair GaNNTs have also been calculated. We found that buckling distance decreases by increasing nanotube diameter. Furthermore, we have investigated the effects of nitrogen and gallium vacancies on structure and electronic properties of zigzag GaNNT (5,0) using spin dependent density functional theory. By calculating the formation energy, we found that N vacancy in GaNNT (5,0) is more favorable than Ga vacancy. The nitrogen vacancy in zigzag GaNNT induces a 1.0μB magnetization and makes a polarized structure. We have shown that in polarized GaNNT a flat band near the Fermi energy splits to occupied spin up and unoccupied spin down levels.  相似文献   

10.
We present calculations of the quasiparticle energies and band gaps of graphene nanoribbons (GNRs) carried out using a first-principles many-electron Green's function approach within the GW approximation. Because of the quasi-one-dimensional nature of a GNR, electron-electron interaction effects due to the enhanced screened Coulomb interaction and confinement geometry greatly influence the quasiparticle band gap. Compared with previous tight-binding and density functional theory studies, our calculated quasiparticle band gaps show significant self-energy corrections for both armchair and zigzag GNRs, in the range of 0.5-3.0 eV for ribbons of width 2.4-0.4 nm. The quasiparticle band gaps found here suggest that use of GNRs for electronic device components in ambient conditions may be viable.  相似文献   

11.
梁维  肖杨  丁建文 《物理学报》2008,57(6):3714-3719
基于晶格动力学理论,采用力常数模型,计算了石墨带的声子色散关系、振动模式密度和比热.计算结果表明,石墨带的声子谱特征介于一维碳纳米管和二维石墨片之间.扶手椅型和锯齿型石墨带的中、高频声子支分别与锯齿型和扶手椅型碳纳米管的类似.由于声子限域效应,低频声子支随着石墨带带宽的改变出现明显的频移现象.振动模式密度在高频区几乎不敏感于带宽,而低频区的峰位随着带宽的增加而逐渐向低频移动.此外,无论是在低温还是高温,比热都随着带宽的增加而逐渐降低,呈现量子尺寸效应.在300K时,比热可以拟合成CV=CVg+A/n,其中CVg为石墨片的热容,而A/n项反映了石墨带中边缘效应对比热的影响. 关键词: 石墨带 声子色散关系 比热  相似文献   

12.
本文基于密度泛函理论计算分析了手性参数为(17,0)、(20,0)、(26,0) (10,10)、(12,12)、(15,15)的碳化硅纳米管的能带图,态密度及主要光学性质。结果表明:锯齿型与扶手椅型碳化硅纳米管均具有明显的半导体性质;在相近直径下,扶手椅型碳化硅纳米管带隙宽度要大于锯齿型碳化硅纳米管的带隙宽度;碳化硅纳米管的光吸收峰在100nm~200nm之间,可用于制作紫外线探测器件。  相似文献   

13.
Through density functional theory calculations, the impact of edge functionalization with O, OH, and alternate termination of them (OHO) on the structural stabilities, electronic and magnetic properties of blue phosphorene nanoribbons (BPNR) are mainly investigated. The formation energies demonstrate that the O-termination on the BPNRs is the most stable, and OHO-termination is more stable than OH-termination, besides the ab initio dynamic simulation show that they are all thermal dynamically stable at room temperature. Both the ground structures of O- and OH-BPNRs are spin-polarized semiconductors, while OH-functionalized BPNRs are nonmagnetic semiconductors. As the ribbon width increasing, the band gaps of O-aBPNRs tend to 1.04 eV, but that of OH-aBPNRs tend to 1.97 eV, comparable with the band gap of single-layer blue phosphorene, since it is dominated by pz electrons of the inner P atoms. In contrast, the influence of OHO-termination on GNRs, SiNRs, and black PNRs are also studied. Our results demonstrate that OHO-terminated GNRs and SiNRs are not a simple summation of O- and OH-terminated GNRs and SiNRs, and they are nonmagnetic stable both with zigzag and armchair edges, presenting metallic properties. While the OHO-terminated black PNRs present similar electronic and magnetic properties with OHO-terminated blue PNRs, and both the OHO-terminated zigzag and armchair edges are spin-polarized stable. These results provide potential help in the fields of band gap engineering and the designing of phosphorus-based spin devices with control over spin in spintronics.  相似文献   

14.
In this study, the electronic and the optical properties of monolayer black phosphorus (BP) doped with Gold (Au), Tin (Sn) and Iodine (I) atoms have been investigated by the density-functional theory (DFT) method. In the calculations, the electronic and the optical properties of monolayer BP have been substantially changed with doping. Monolayer BP has a narrow bandgap as 0.85 eV, BP doped with these atoms, results in a metallic behaviour and nearly spin gapless band gap behaviour. The dielectric constant of BP which shows anisotropic optical properties due to different edge states as zigzag and armchair has been changed with doping especially with Au.  相似文献   

15.
In this paper, we investigate the electronic structure of both armchair and zigzag α-graphyne nanoribbons. We use a simple tight binding model to study the variation of the electronic band gap in α-graphyne nanoribbon. The effects of ribbon width, transverse electric field and edge shape on the electronic structure have been studied. Our results show that in the absence of external electric field, zigzag α-graphyne nanoribbons are semimetal and the electronic band gap in armchair α-graphyne nanoribbon oscillates and decreases with ribbon's width. By applying an external electric field the band gap in the electronic structure of zigzag α-graphyne nanoribbon opens and oscillates with ribbon width and electric field magnitude. Also the band gap of armchair α-graphyne nanoribbon decreases in low electric field, but it has an oscillatory growth behavior for high strength of external electric field.  相似文献   

16.
The structural and electronic properties of semiconductors (Si and Ge) and metal (Au and Tl) atoms doped armchair (n, n) and zigzag (n, 0); n=4–6, single wall carbon nanotubes (SWCNTs) have been studied using an ab-initio method. We have considered a linear chain of dopant atoms inside CNTs of different diameters but of same length. We have studied variation of B.E./atom, ionization potential, electron affinity and HOMO–LUMO gap of doped armchair and zigzag CNTs with diameter and dopant type. For armchair undoped CNTs, the B.E./atom increases with the increase in diameter of the tubes. For Si, Ge and Tl doped CNTs, B.E./atom is maximum for (6, 6) CNT whereas for Au doped CNTs, it is maximum for (5, 5) CNTs. For pure CNTs, IP decreases slightly with increasing diameter whereas EA increases with diameter. The study of HOMO–LUMO gap shows that on doping metallic character of the armchair CNTs increases whereas for zigzag CNTs semiconducting character increases. In case of zigzag tubes only Si doped (5, 0), (6, 0) and Ge doped (6, 0) CNTs are stable. The IP and EA for doped zigzag CNTs remain almost independent of tube diameter and dopant type whereas for doped armchair CNTs, maximum IP and EA are observed for (5, 5) tube for all dopants.  相似文献   

17.
We have investigated the electronic properties of bare, H-terminated, Cu-terminated and Cu-doped armchair graphene nanoribbons (AGNRs) using ab-initio approach. We found that H-termination enhances the stability and band gap whereas H extraction introduces dangling bands and lowers the band gap making bare ribbons indirect band gap semiconductors. The calculations revealed that strong hybridization between Cu atoms and AGNRs, lessen the band gap for Cu-terminated ribbons and gives rise to metallicity in Cu-doped AGNRs irrespective of their widths. Formation energy of considered ribbons yield that H-terminated AGNRs with lowest formation energy are most energetically favored, next are one edge Cu-terminated ribbons followed by bare ones whereas both edges Cu-doped ribbons are least energetically plausible. We predict that presence of Cu atoms in GNRs, significantly alter the band gap and can be used in band gap engineering of nanoribbons.  相似文献   

18.
The effect of the dangling bond on the electronic and magnetic properties of BN nanoribbon with zigzag edge (ZBNNR) and armchair edge (ABNNR) have been studied using the first-principles projector-augmented wave (PAW) potential within the density function theory (DFT) framework. Though ZBNNR or ABNNR with H atom terminated at both edges is nonmagnetic semiconductor, the dangling bond induces magnetism for the ZBNNR with bare N edge, bare B edge, bare N and B edges, the ABNNR with bare N edge and bare B edge. However, the ABNNR with bare N and B edges is still nonmagnetic semiconductor due to the strong coupling of the dangling bonds of dimeric N and B atoms at the same edge. The magnetic moment of ZBNNR with bare N(B) edge is nearly half the magnetic moment of ABNNR with bare N(B) edge. Such a half relationship is also existed in the number of the dangling bond states appeared around the Fermi level in the band structures. Furthermore, the dangling bond states also cause both ZBNNR and ABNNR with bare N edge a transition from semiconducting to half-metallic and thus a completely (100%) spin-polarization, while cause both ZBNNR and ABNNR with bare B edge as well as ABNNR with bare N and B edges only a decrease in their band gap.  相似文献   

19.
Within tight-binding model, the band gaps of armchair and zigzag carbon nanotubes (CNTs) under both uniaxial tensile and torsional strains have been studied. It is found that the changes in band gaps of CNTs depend strongly on the strain type. The torsional strain can induce a band gap for armchair CNTs, but it has little effect on band gap of the zigzag CNTs. While the tensile strain has great effect on band gap of zigzag CNTs, but it has no effect on that of the armchair CNTs. More importantly, when both the tensile and torsional strains are simultaneously applied to the CNTs, the band gap changes of armchair CNTs are not equal to a simple sum over those induced separately by uniaxial tensile and torsional strains. There exists a cooperative effect between two kinds of strains on band gap changes of armchair CNTs. But for zigzag CNTs, the cooperative effect was not found. Analytical expressions for the band gaps of armchair and zigzag CNTs under combined uniaxial–torsional strains have been derived, which agree well with the numerical results.  相似文献   

20.
袁健美  毛宇亮 《物理学报》2011,60(10):103103-103103
基于密度泛函理论的第一性原理计算方法,研究了宽度N=8的边缘氢化和非氢化条带的结构和电子性质. 研究表明,扶手形无氢化石墨纳米条带的边缘碳原子是以三重键相互结合,它在边缘的成键强度比氢化时要高,具有更强的化学活性,可作为纳米化学传感器的基础材料. 能带结构计算表明,无论是扶手形条带还是锯齿形条带,它们都是具有带隙的半导体,且无氢化条带的带隙要比氢化的条带带隙宽度大,氢化对于条带的电子性质具有显著修饰作用. 通过锯齿形石墨纳米条带顺磁性、铁磁性和反铁磁性的计算,发现反铁磁的状态最稳定,并且边缘磁性最强,这有利于条带在自旋电子器件中的应用. 关键词: 石墨纳米条带 成键机理 电子结构 自旋分布  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号