首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Γ8(4A2g) →Γ7(2T2g), Γ8(2T2g) electronic transitions for the 5d3 hexafluororhenate(IV) ion have been observed at liquid hydrogen temperature in a single Cs2GeF6 crystal and in a mixed crystal where the ReF?26 ion is doped in the cubic Cs2GeF6 lattice. The electronic transitions have been assigned with a crystal field model to give information about the parameters B, C, Dq, and spin-orbit coupling. The vibrational structure in the mixed crystal system may be assigned to the ungerade modes of the ReF?26 moiety. Comparison of the mixed and pure crystal vibrational structure shows that the pure crystal vibrational structure can be interpreted on the basis of K ≠ 0 lattice effects and a small distortion in the pure crystal.  相似文献   

2.
The level crossing method has been used for the investigation of the hyperfine structure of the 6p2P3/2 and 7p2P3/2 levels of the isotopes Cs133, Cs135, and Cs137. For the hyperfine coupling constants a and b and for the lifetimes Τ we find: a(6p Cs133)=50.72(3) gJ/?1.345, b(6p Cs133)=?0.38(18) gJ/?1.345 a(7p Cs133)=16.610(6) gJ/?1.3349, b(7p Cs133)=?0.15(3) gJ/?1.3349 a(6p Cs135)=53.64(4) gJ/?1.345, b(6p Cs135)=7.41(32) gJ/?1.345 a(7p Cs135)=17.570(6) gJ/?1.3349, b(7p Cs135)=2.35(7) gJ/?1.3349 a(6p Cs137)=55.80(4) gJ/?1.345, b(6p Cs137)=7.54(20) gJ/?1.345 a(7p Cs137)=18.274(6) gJ/?1.3349, b(7p Cs137)=2.37(4) gJ/?1.3349 (MHz), Τ(6p2P3/2)=29.7(2) ?1.345/gJ ns, Τ(7p2P3/2)=135(1) ?1.3349Jns. From a comparison with double resonance results the gJ factor of the 7p2P3/2 level was deduced: gJ(7p2P3/2=?1.3349(10). Level crossing measurements in the 8p2P3/2 state of Cs133 give for the gJ factor and the lifetime the following results: gJ(8p2P3/2)=?1.3353(14), Τ(8p2P3/2)=310(15) ns. Using recently calculated relativistic correction factors and applying corrections for core polarization and the Sternheimer effect, we obtain for the quadrupole moments: Q(Cs133)=?0.0030 b, Q(Cs135)=+0.052 b, Q(Cs137)=+0.052 b.  相似文献   

3.
Results of the optical spectroscopy investigation of the cubic paramagnetic center Yb3+ ion in the Cs2NaYF6 single crystal are presented. The Stark level energies of the Yb3+ multiplets are established from absorption, luminescence and excitation luminescence spectra and the crystal field parameters are calculated. Information about the phonon spectra of Cs2NaYF6 crystals is obtained from the electron-vibrational structure of the optical absorption and luminescence spectra.  相似文献   

4.
Detailed study of dependence of the crystal field strength 10Dq and lowest charge transfer (CT) energies for different interionic distances in Cs2GeF6:Mn4+ and Cs2GeF6:Os4+crystals is presented. The calculations were performed using the first-principles discrete-variational Dirac-Slater (DV-DS) method. As a result, the functional dependencies of 10Dq and lowest CT energy on the metal-ligand distance R were obtained without any fitting or semiempirical parameters. It was shown that 10Dq depends on R as 1/Rn, with n=4.0612 and 4.3874 for Cs2GeF6:Mn4+ and Cs2GeF6:Os4+, respectively. Two approximations (linear and quadratic) are obtained for the dependence of the lowest CT energy on R; CT energy decreases when R increases with dE(CT)/dR=−638 and −1080 cm−1/pm for Cs2GeF6:Mn4+ and Cs2GeF6:Os4+, respectively, if the linear approximation is used. These values can be used for estimations of the lowest CT energies for Mn4+ and Os4+ ions in other hosts with fluorine ligands. Estimations of the electron-vibrational interaction (EVI) constants, Huang-Rhys parameters, and Stokes shifts for all the above-mentioned crystals were performed using the obtained 10Dq and E(CT) functions.  相似文献   

5.
A 56×56 energy matrix containing the ground multiplet 8S7/2 and the excited multiplets 6L7/2 (where L=P, D, F, G, H, I) for 4f7 ion Gd3+ at a tetragonal crystal field and under an external magnetic field is constructed. By diagonalizing the energy matrix, the spin-Hamiltonian parameters (g factors g, g and zero-field splittings b20, b40, b44, b60, b64) for Gd3+ ion at the tetragonal Y3+ site of YMO4 (M=V, P, As) crystals are calculated. The calculated results are in reasonable agreement with the experimental values. The defect structures of Gd3+ centers in YMO4 crystals are estimated from the calculation. The results are discussed.  相似文献   

6.
Abstract

The luminescence spectrum of Cs2NaScCl6:Pr3+ (0.1 at.%) has been recorded at temperatures down to 10 K and assigned between 20,800 and 9900 cm?1. Twenty‐three energy levels of the 4f2 configuration Pr3+ ion were located and then fitted by the conventional 4f2 crystal field calculation, as well as by a configuration interaction assisted crystal field (CIACF) calculation. The latter gave a much better fit. A comparison of the fit for Cs2NaScCl6:Pr3+ with fits upon the same set of energy levels in Cs2NaYCl6:Pr3+ and Cs2NaPrCl6, where the fifth nearest neighbor of Pr3+ is changed and the lattice parameter increases along this series, shows a decrease in the magnitudes of the crystal field parameters, which were also semiquantitatively simulated. Several facets of the emission spectra are interesting, including the observation of weak progressions in the totally symmetric Pr–Cl stretching vibration and the occurrences of the resonance of electronic and vibronic states. The spectra of Cs2NaScCl6:Pr3+ (1 at.%) differ considerably from those of the more dilute system and show that other species are formed rather than a complete substitution of the Sc3+ sites by Pr3+.  相似文献   

7.
The spin-Hamiltonian parameters (g factor g //, g and hyperfine structure constants A //, A ) for Er3+ ion at the trigonal Al3+ site of AlN crystal are calculated by diagonalising the 52 × 52 energy matrix. The matrix are related to the ground mutiplet 4I15/2 and the first to third excited multiplets 4I13/2, 4I11/2 and 4I9/2 for 4f11 ions in trigonal crystal field under an external magnetic field. The crystal-field parameters used in the matrix are obtained from the superposition model and the local lattice relaxation due to the substitution of Er3+ for Al3+ is considered. The calculated spin-Hamiltonian parameters are in reasonable agreement with the experimental values and the signs of hyperfine structure constants are suggested. The results are discussed.  相似文献   

8.
A detailed study using the ab initio DFT-based calculations of the electronic and optical properties of pure and Mn4+ doped Ba2LaNbO6 is presented in this paper. Comparison of the calculated electronic bands structure, density of states diagrams, and dielectric functions for the pure and doped crystal reveals the changes induced by the Mn4+ impurity ions. In addition, the energy levels of the Mn4+ ion in the ordered perovskite Ba2LaNbO6 are calculated by the exchange charge model (ECM) of crystal field theory and compared with the experimental data that has been presented in the literature. The calculated Mn4+ energy levels are in good agreement with the experimental spectra. Additionally, the excitation band shapes of the 4A2g(4F)–4T2g(4F) and 4A2g(4F)–4T1g(4F) transitions are modeled to estimate the zero-phonon lines (ZPL) positions and the effective number of phonons, which are involved in the corresponding excitation transition. The results of our calculations yield the crystal field parameter of Dq=1780 cm?1 and Racah parameters B=670 and C=3290 cm?1, with C/B=4.9 for the Mn4+ ion in the double-perovskite Ba2LaNbO6.  相似文献   

9.
The room temperature absorption and magnetic circular dichroism spectra and the absorption spectrum at liquid helium (liquid He) temperature have been measured for Cs2NaPrCl6. At room temperature the crystal is cubic and the Pr3+ sites have O h symmetry. All terms above 15 000 cm-1, except 1S0, have been assigned and a previous assignment in PrCl6 3- has been shown to be incorrect. The transition at 20 631 cm-1 is assigned to 3H4(A 1g ) →3P1(T 1g ), in contradiction to previous assignments of Pr3+ spectra in other systems. A rich vibrational structure was observed in every transition. Vibrations have been assigned using the site group approximation and there is substantial agreement with the vibrational assignments in Cs2NaEuCl6. A crystal phase transition takes place between room temperature and liquid nitrogen temperature and the O h forbidden transitions, A 1g Eg and T 2g , are observed. At lower temperatures many additional lines are observed but it is unclear presently whether they are due to lower symmetry or a breakdown of the site group approximation.  相似文献   

10.
T. Fukami  S. Jin  R. H. Chen 《Ionics》2006,12(4-5):257-262
Electrical conductivity, differential scanning calorimetry, and X-ray diffraction measurements were performed on a pentacesium trihydrogen tetrasulfate, Cs5H3(SO4)4, crystal. The transition entropy at a superionic phase transition and the activation energy of proton migrations in the superionic phase were determined to be 58.2 J K−1 mol−1 and 0.48 eV, respectively. The crystal structure of Cs5H3(SO4)4 at room temperature was refined. The electrical conduction in Cs5H3(SO4)4 was discussed with the refined structure.  相似文献   

11.
The optical constants of Eu-chalcogenide single crystals have been determined at room temperature for photon energies from 1 to 6 eV. In the same energy range the transmission of thin evaporated films (except for EuO) has been measured with polarized light above and below the magnetic ordering temperature. The observed polarization-dependent splittings of the two main absorption maxima in the region of magnetic order suggest transitions from the 4f7-level into the crystal field split 5dt2g- and 5deg-states. An attempt has been made to relate the maxima of the absorption coefficient to interband transitions and transitions from the localized 4f-states. With this assumption we derived a consistent energy level scheme of the four Eu-chalcogenides. From the scheme we gained useful information about the width of the 5d-states, the crystal field splitting and the possible type of conductivity. Finally we tried to explain theoretically the splittings observed in the region of magnetic order. For this purpose a one-particle model has been used to calculate the transition probabilities for the 4f7?4f6(7F J ) 5dt2g and the 4f7?4f6(7F J ) 5deg transition, taking into account an exchange interaction as well as a spin-orbit coupling. Although this simple model can explain the splittings of the excited 4f6(7F J ) 5deg-state, a complete explanation of the effect of magnetic order on the 4f6(7F J ) 5dt2g-state fails up to now.  相似文献   

12.
Alkaline hexafluorostantanate red phosphors Na2SnF6:Mn4+ and Cs2SnF6:Mn4+ are synthesized by chemical reaction in HF/NaMnO4 (CsMnO4)/H2O2/H2O mixed solutions immersed with tin metal. X-ray diffraction patterns suggest that the synthesized phosphors have a tetragonal symmetry with the space group D4h14 (Na2SnF6:Mn4+) and a trigonal symmetry with the space group D3d3 (Cs2SnF6:Mn4+). Photoluminescence (PL) analysis, PL excitation (PLE) spectroscopy, and the Raman scattering techniques are used to investigate the optical properties of the phosphors. The Franck-Condon analysis of the PLE data yields the Mn4+-related optical transitions to occur at ∼2.39 and ∼2.38 eV (4A2g4T2g) and at ∼2.83 and ∼2.76 eV (4A2g4T1g) for Na2SnF6:Mn4+ and Cs2SnF6:Mn4+, respectively. The crystal field parameters (Dq) of the Mn4+ ions in the Na2SnF6 and Cs2SnF6 hosts are determined to be ∼1930 and ∼1920 cm−1, respectively. Temperature-dependent PL measurements are performed from 20 to 440 K in steps of 10 K, and the obtained results are interpreted by taking into account the Bose-Einstein occupation factor. Comprehensive discussion is given on the phosphorescent properties of a family of Mn4+-activated alkaline hexafluoride salts.  相似文献   

13.
We report a study of the 4 A 2g 2 T 1g absorption band of Mn4+ in Cs2SiF6. The band shows several lines or groups of lines associated with transitions from the 4 A 2g ground state to the spin-orbit components (2 T 1g 8 and (2 T 1g 6 coupled to the three odd-parity vibrations v 6(t 2u ), v 4(t 1u ) and v 3(t 1u ). The absorptions associated with the (2 T 1g 8 electronic state have structure whereas those associated with the (2 T 1g 6 do not. It is shown that the structure is a consequence of splitting of the Γ8 × v vibronic multiplets by electron-vibration interaction. The intensity of the 4 A 2g →(2 T 1g i + vj vibronic transitions are expressed in terms of a small number of parameters; two parameters for v(t 1u ) modes and three for v(t 2u ) modes. Plausible but not good fits to the low temperature Zeeman data and vibronic splitting patterns are obtained. The excitation spectrum of the Cs2SiF6 : Mn4+ in the region of the 4 A 2g 2 Eg and 4 A 2g 2 T 1g is recorded using a c.w. dye laser. This reveals numerous weaker lines involving combinational modes and even-parity modes v5 (t 2g ), v 2(eg ) and v 1(a 1g ). Several interesting electron-vibrational effects are observed. These are illustrated and discussed qualitatively.  相似文献   

14.
《Solid State Communications》2003,125(7-8):423-427
In most of the TCNQ complex salts, conduction electrons are localized on specific TCNQ sites, so that these salts show nonmetalic behavior. The caesium salt, Cs2(TCNQ)3, is one of the 2:3 complex salts. In the crystal, TCNQ molecules form trimeric units, which consist of two TCNQ radical anion sandwiching a neutral TCNQ along the column. The rubidium salt, Rb2(TCNQ)3, also has a similar crystal structure to Cs2(TCNQ)3. We measured infrared absorption (IR) and Raman spectra for these salts under high pressure by using a diamond anvil cell. In the case of IR spectra, Cs2(TCNQ)3 showed a spectral change probably due to a pressure-induced phase transition. Similar feature was not clearly observed in the Rb2(TCNQ)3. On the other hand, the Raman spectra, Cs2(TCNQ)3 showed two phase transition at 2.5 and 4.1 GPa in the compression stage. The change from localization phase to delocalization phase occurred at latter transition with large hysteresis. Similar phase transition occurred at 3.2 GPa in the Rb2(TCNQ)3. The reason for the difference in transition pressure is that the ion radius of Rb+ is smaller than that of Cs+, because a small ion radius of the counter ion probably favors the charge localization-delocalization transition of the TCNQ column.  相似文献   

15.
Optical absorption spectrum of Cr3+ ion doped in zinc cesium sulphate hexahydrate single crystal has been studied both at room and liquid nitrogen temperatures. From the nature and position of the bands a successful interpretation of all the bands could be made assuming octahedral symmetry for the Cr3+ ion in the crystal. The observed bands are assigned to the transitions from the ground 4A2g(F) state to the excited 2Eg(G), 2T1g(G), 4T2g(F) and 4T1g(F) states.The crystal field parameters Dq = 1735 cm?1, B = 635 cm?1 and C = 4.75 B are found to give a good fit to the observed band positions.  相似文献   

16.
A theory of the crystal field for Ln3+ ions is proposed which takes account of the difference in the effect of excited configurations on high-lying and low-lying multiplets. The effective-operator method in third-order perturbation theory is used to obtain the Hamiltonian of the crystal field, which in addition to the usual terms contains energy-dependent operators. Their role is discussed in detail. For the new operators we have obtained convenient expressions which make it possible for the first time to determine the parameters of an odd crystal field on the basis of an analysis of the structure of the energy spectrum. Theory is compared with experiment for the laser crystals Y3Al5O12:Tm3+ and LiYF4:Pr3+. Taking the new terms of the crystal-field Hamiltonian into account produces an additional shift of individual levels within the limits from −40 cm−1 to 40 cm−1 and makes it possible in a number of cases not only to substantially reduce the value of the standard deviation, but also to obtain the correct arrangement of levels. Zh. éksp. Teor. Fiz. 116, 2087–2102 (December 1999)  相似文献   

17.
The low-temperature single-crystal polarized absorption and the luminescence spectra of Cs2[CrCl2(H2O)4]Cl3 are theoretically analyzed in order to determine the electronic structure of the trans-[CrCl2(H2O)4]+ complex. This study, based on the Racah theory, leads to a good agreement between the theoretical and experimental energy levels. The electronic-exited state 4T2g(Oh) is split into 4Eg and 4B2g components due to the lowering of the symmetry from Oh to D4h. The polarized absorption spectrum and the theoretical energies show that the 4Eg(D4h) state is lower in energy than the 4B2g(D4h) state. The resolved vibronic structure in the luminescence spectrum reveals a progression in a non-totally symmetric b1g mode, a manifestation of a Jahn-Teller effect in the emitting state 4T2g(Oh). Both Jahn-Teller and spin-orbit coupling in the orbitally degenerated 4Eg(D4h) state are necessary to account for the spectroscopic observations.  相似文献   

18.
The hyperfine structure splitting of the 72 P 3/2 state of Cs134 has been measured by optical double resonance spectroscopy in zero magnetic field. The following interaction constants have been obtained: Magnetic hfs constantA(72 P 3/2, Cs134)=16.851 (16) MHz. Quadrupole coupling constantB(72 P 3/2, Cs134)=18.07 (12) MHz. Then the electric quadrupole moment of Cs134 can be calculatedQ hfs(Cs134)=+0.436 (3) barn without Sternheimer correction, andQ(Cs134)=+0.356(2) barn with Sternheimer correction. A method for the production of alkali resonance cells with quantities of less than 1014 atoms of the radioactive isotope is described.  相似文献   

19.
Single crystals of nickel-doped lithium potassium sulphate were grown by slow evaporation method at room temperature. From the nature and position of the bands observed, a successful interpretation of all the bands could be made assumingO h symmetry for the Ni2+ ion in the crystal. The bands have been assigned transitions from the ground3A2g(F) state to the excited3T2g(F),1Eg(D),3T1g(F),1T2g(D) and3T1g(P) states. The crystal field parameters derived areDq=910cm–1,B=890cm–1 andC=3560cm–1.The authors wish to express their thanks to Prof. K. Sreerama Murthy for his constant encouragement throughout this investigation. The authors are also thankful to Prof. Mihir Chowdhury, Indian Association for the cultivation of Science, Calcutta for giving permission to take the spectra.  相似文献   

20.
A precision study of the decay of134Cs g and134Cs m has been made, using ordinary Ge(Li) spectrometers and ā Compton-suppression spectrometer. The logft value of the second forbidden nonuniqueβ-decay to134Xe has been measured to be 13.0±0.2. TheM4γ-ray transition in134Csm(8?) decay has been measured to haveα K= 73±7 and a hindrance of 7.0 over the Moskowski estimate. This is discussed in terms of the level configurations and the analogous transition in133Xe. A new intensity limit of 2×10?6 has been set for the zero-phonon transition between the 4+ and 2+ members of the two-phonon triplet. This leads to an upper limit forB(E2)4→2′, greater than 905. This and the more preciseγ-ray intensity values are discussed in relation to presently available nuclear models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号