首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By analyzing the real space non-equilibrium dynamics of polymers, we elucidate the physics of driven translocation and propose its dynamical scaling scenario analogous to that in the surface growth phenomena. We provide a detailed account of the previously proposed tension-propagation formulation and extend it to cover the broader parameter space relevant to real experiments. In addition to a near-equilibrium regime, we identify three distinct non-equilibrium regimes reflecting the steady-state property of a dragged polymer with finite extensibility. Finite-size effects are also pointed out. These elements are shown to be crucial for the appropriate comparison with experiments and simulations.  相似文献   

2.
Atomistic simulation methods are known for timescale limitations in resolving slow dynamical processes. Two well-known scenarios of slow dynamics are viscous relaxation in supercooled liquids and creep deformation in stressed solids. In both phenomena the challenge to theory and simulation is to sample the transition state pathways efficiently and follow the dynamical processes on long timescales. We present a perspective based on the biased molecular simulation methods such as metadynamics, autonomous basin climbing (ABC), strain-boost and adaptive boost simulations. Such algorithms can enable an atomic-level explanation of the temperature variation of the shear viscosity of glassy liquids, and the relaxation behavior in solids undergoing creep deformation. By discussing the dynamics of slow relaxation in two quite different areas of condensed matter science, we hope to draw attention to other complex problems where anthropological or geological-scale time behavior can be simulated at atomic resolution and understood in terms of micro-scale processes of molecular rearrangements and collective interactions. As examples of a class of phenomena that can be broadly classified as materials ageing, we point to stress corrosion cracking and cement setting as opportunities for atomistic modeling and simulations.  相似文献   

3.
We construct different equivalent non-equilibrium statistical ensembles in a simple yet instructive \(N\) -degrees of freedom model of atmospheric turbulence, introduced by Lorenz in 1996. The vector field can be decomposed into an energy-conserving, time-reversible part, plus a non-time reversible part, including forcing and dissipation. We construct a modified version of the model where viscosity varies with time, in such a way that energy is conserved, and the resulting dynamics is fully time-reversible. For each value of the forcing, the statistical properties of the irreversible and reversible model are in excellent agreement, if in the latter the energy is kept constant at a value equal to the time-average realized with the irreversible model. In particular, the average contraction rate of the phase space of the time-reversible model agrees with that of the irreversible model, where instead it is constant by construction. We also show that the phase space contraction rate obeys the fluctuation relation, and we relate its finite time corrections to the characteristic time scales of the system. A local version of the fluctuation relation is explored and successfully checked. The equivalence between the two non-equilibrium ensembles extends to dynamical properties such as the Lyapunov exponents, which are shown to obey to a good degree of approximation a pairing rule. These results have relevance in motivating the importance of the chaotic hypothesis. in explaining that we have the freedom to model non-equilibrium systems using different but equivalent approaches, and, in particular, that using a model of a fluid where viscosity is kept constant is just one option, and not necessarily the only option, for describing accurately its statistical and dynamical properties.  相似文献   

4.
邓天舒  易为 《物理学报》2019,68(4):40303-040303
本文对近两年来有关淬火动力学过程中拓扑现象的研究做简要综述.这些动力学拓扑现象被动力学过程中的衍生拓扑不变量保护,与淬火前后体系的拓扑性质有密切关系.基于人工量子模拟平台的高度可控性,已在诸如超冷原子、超导量子比特、核磁共振、线性光学等众多物理体系中,通过对人工拓扑体系动力学过程的调控,观测到如动力学涡旋、动量-时间域的Hopf映射及环绕数、拓扑保护的自旋环结构、动力学量子相变、动量-时间斯格明子等诸多动力学拓扑现象.其中某些拓扑结构还可以在非幺正动力学淬火过程中稳定存在.这些研究将人们对拓扑物相的认识和研究从平衡态推广到非平衡动力学领域,具有重要的科学价值.  相似文献   

5.
Using the method of the quasiclassical Green function, we derive a set of kinetic equations which describe general nonequilibrium situations in the quasiclassical regime, i.e., when the external frequency and wave vector, ω and q are small compared to the atomic scale (ω ? μ, ∥ q ∥ ? pf. The equations consist of a Boltzmann equation for the quasiparticle distribution function, labeled by the energy and the direction of the momentum (particle representation), coupled to a time dependent Ginzburg-Landau equation for the order parameter. We discuss extensively the properties of these equations, and apply them to orbital and spin dynamics. Solving the Boltzmann equation in a well defined approximation, we are able to derive the expressions for the linewidths for all temperatures, with the correct identification of the phenomenological relaxation times. Furthermore, we discuss the connection between various relaxation times used in non-equilibrium situations, and we give a detailed comparison of the particle representation with the excitation representation which is used frequently in other work on non-equilibrium phenomena in superfluid 3He and in superconductors.  相似文献   

6.
The goal of neural science is to understand the brain, how we perceive, move, think, and remember. All of these things are dynamical processes which are taking place in a complex, non-stationary and noisy environment. This means that these dynamical processes at all levels from small neural networks to behavior should be stable against perturbations but flexible and adaptive. The goal of neurodynamics is to formulate the main dynamical principles which can be a basis of such behavior and to predict the possible activities of neurons and neural ensembles using the tools of nonlinear dynamics. In this paper we discuss our last results related to the mostly challenging part of neurodynamics: information processing by dynamical neural ensembles.  相似文献   

7.
8.
Experiments using atomic force microscopy for unfolding single multidomain biopolymers cover a broad range of time scales from equilibrium to non-equilibrium. A master equation approach allows to identify and treat coherently three dynamical regimes for increasing linear ramp velocity: i) an equilibrium regime, ii) a transient regime where refolding events still occur, and iii) a saw-tooth regime without any refolding events. For each regime, analytical approximations are derived and compared to numerically investigated examples. We analyze in the framework of this model also a periodic experimental protocol instead of a linear ramp. In this case, a major simplification arises if the dynamics can be restricted to an effectively two-dimensional subspace. For transitions with an intermediate meta-stable state, like Immunoglobulin27, a refined model allows to extract previously unknown molecular parameters related to this meta-stable state.  相似文献   

9.
Multistability, i.e., the coexistence of several attractors for a given set of system parameters, is one of the most important phenomena occurring in dynamical systems. We consider it in the velocity dynamics of a Brownian particle, driven by thermal fluctuations and moving in a biased periodic potential. In doing so, we focus on the impact of ergodicity—A concept which lies at the core of statistical mechanics. The latter implies that a single trajectory of the system is representative for the whole ensemble and, as a consequence, the initial conditions of the dynamics are fully forgotten. The ergodicity of the deterministic counterpart is strongly broken, and we discuss how the velocity multistability depends on the starting position and velocity of the particle. While for non-zero temperatures the ergodicity is, in principle, restored, in the low temperature regime the velocity dynamics is still affected by initial conditions due to weak ergodicity breaking. For moderate and high temperatures, the multistability is robust with respect to the choice of the starting position and velocity of the particle.  相似文献   

10.
In this paper we derive deterministic mesoscopic theories for model continuous spin lattice systems both at equilibrium and non-equilibrium in the presence of thermal fluctuations. The full magnetic Hamiltonian that includes singular integral (dipolar) interactions is also considered at equilibrium. The non-equilibrium microscopic models we consider are relaxation-type dynamics arising in kinetic Monte Carlo or Langevin-type simulations of lattice systems. In this context we also employ the derived mesoscopic models to study the relaxation of such algorithms to equilibrium  相似文献   

11.
Since Gibbs synthesized a general equilibrium statistical ensemble theory, many theorists have attempted to generalized the Gibbsian theory to
non-equilibrium phenomena domain, however the status of the theory of non-equilibrium phenomena can not be said as firm as well established as the
Gibbsian ensemble theory. In this work, we present a framework for the non-equilibrium statistical ensemble formalism based on a subdynamic kinetic
equation (SKE) rooted from the Brussels-Austin school and followed by some up-to-date works. The constructed key is to use a similarity transformation between Gibbsian ensembles formalism based on Liouville equation and the subdynamic ensemble formalism based on the SKE. Using this formalism, we study the spin-Boson system, as cases of weak coupling or strongly coupling, and obtain the reduced density operators for the Canonical ensembles easily.  相似文献   

12.
Exploration of coherence phenomena in ensembles of interacting dynamical systems has been in the centre of research in social, physical, biological and technological systems for decades. But, in most of the studies, either completely percolated time- and space-static networks or temporal connectivities disregarding the systems' own dynamics have been dealt with. In this work, we examine the correlation between structural and dynamical evolution in networks of interacting dynamical systems. We specifically demonstrate the scenario of convergence of a set of chaotic attractors into a single attractor as a result of sufficient interaction based on the closeness of their own states. We characterize this occurrence through different measures, and map the collective states in network parameters' space. We further validate our proposition while exposing the whole scenario for different chaotic systems, namely Lorenz and Rössler oscillators.  相似文献   

13.
Many dynamical processes on real world networks display complex temporal patterns as, forinstance, a fat-tailed distribution of inter-events times, leading to heterogeneouswaiting times between events. In this work, we focus on distributions whose averageinter-event time diverges, and study its impact on the dynamics of random walkers onnetworks. The process can naturally be described, in the long time limit, in terms ofRiemann-Liouville fractional derivatives. We show that all the dynamical modes possess, inthe asymptotic regime, the same power law relaxation, which implies that the dynamics doesnot exhibit time-scale separation between modes, and that no mode can be neglected versusanother one, even for long times. Our results are then confirmed by numericalsimulations.  相似文献   

14.
The question of how reversible microscopic equations of motion can lead to irreversible macroscopic behaviour has been one of the central issues in statistical mechanics for more than a century. The basic issues were known to Gibbs. Boltzmann conducted a very public debate with Loschmidt and others without a satisfactory resolution. In recent decades there has been no real change in the situation. In 1993 we discovered a relation, subsequently known as the Fluctuation Theorem (FT), which gives an analytical expression for the probability of observing Second Law violating dynamical fluctuations in thermostatted dissipative non-equilibrium systems. The relation was derived heuristically and applied to the special case of dissipative non-equilibrium systems subject to constant energy 'thermostatting'. These restrictions meant that the full importance of the Theorem was not immediately apparent. Within a few years, derivations of the Theorem were improved but it has only been in the last few of years that the generality of the Theorem has been appreciated. We now know that the Second Law of Thermodynamics can be derived assuming ergodicity at equilibrium, and causality. We take the assumption of causality to be axiomatic. It is causality which ultimately is responsible for breaking time reversal symmetry and which leads to the possibility of irreversible macroscopic behaviour. The Fluctuation Theorem does much more than merely prove that in large systems observed for long periods of time, the Second Law is overwhelmingly likely to be valid. The Fluctuation Theorem quantifies the probability of observing Second Law violations in small systems observed for a short time. Unlike the Boltzmann equation, the FT is completely consistent with Loschmidt's observation that for time reversible dynamics, every dynamical phase space trajectory and its conjugate time reversed 'anti-trajectory', are both solutions of the underlying equations of motion. Indeed the standard proofs of the FT explicitly consider conjugate pairs of phase space trajectories. Quantitative predictions made by the Fluctuation Theorem regarding the probability of Second Law violations have been confirmed experimentally, both using molecular dynamics computer simulation and very recently in laboratory experiments.  相似文献   

15.
16.
In this paper, we consider the thermal bath Lindblad master equation to describe the quantum nonunitary dynamics of quantum states in a multi-mode bosonic system. For the two-mode bosonic system interacting with an environment, we analyse how both the coupling between the modes and the coupling with the environment characterised by the frequency and the relaxation rate vectors affect dynamics of the entanglement. We discuss how the revivals of entanglement can be induced by the dynamic coupling between the different modes. For the system, initially prepared in a two-mode squeezed state, we find the logarithmic negativity as defined by the magnitude and orientation of the frequency and the relaxation rate vectors. We show that, in the regime of finite-time disentanglement, reorientation of the relaxation rate vector may significantly increase the time of disentanglement.  相似文献   

17.
We review the use of kinetically constrained models (KCMs) for the study of dynamics in glassy systems. The characteristic feature of KCMs is that they have trivial, often non-interacting, equilibrium behaviour but interesting slow dynamics due to restrictions on the allowed transitions between configurations. The basic question which KCMs ask is therefore how much glassy physics can be understood without an underlying 'equilibrium glass transition'. After a brief review of glassy phenomenology, we describe the main model classes, which include spin-facilitated (Ising) models, constrained lattice gases, models inspired by cellular structures such as soap froths, models obtained via mappings from interacting systems without constraints, and finally related models such as urn, oscillator, tiling and needle models. We then describe the broad range of techniques that have been applied to KCMs, including exact solutions, adiabatic approximations, projection and mode-coupling techniques, diagrammatic approaches and mappings to quantum systems or effective models. Finally, we give a survey of the known results for the dynamics of KCMs both in and out of equilibrium, including topics such as relaxation time divergences and dynamical transitions, nonlinear relaxation, ageing and effective temperatures, cooperativity and dynamical heterogeneities, and finally non-equilibrium stationary states generated by external driving. We conclude with a discussion of open questions and possibilities for future work.  相似文献   

18.
《Physica A》2006,365(1):120-127
The effect of nearest-neighbor coupling on the thermodynamic and dynamical properties of the ferromagnetic Hamiltonian mean field model (HMF) is studied. For a range of antiferromagnetic nearest-neighbor coupling, a canonical first-order transition is observed, and the canonical and microcanonical ensembles are non-equivalent. In studying the relaxation time of non-equilibrium states it is found that as in the HMF model, a class of non-magnetic states is quasi-stationary, with an algebraic divergence of their lifetime with the number of degrees of freedom N. The lifetime of metastable states is found to increase exponentially with N as expected.  相似文献   

19.
We describe a wavelet-based approach to the investigation of spatiotemporally complex dynamics, and show through extensive numerical studies that the dynamics of the Kuramoto-Sivashinsky equation in the spatiotemporally chaotic regime may be understood in terms of localized dynamics in both space and scale (wave number). A projection onto a spline wavelet basis enables good separation of scales, each with characteristic dynamics. At the large scales, one observes essentially slow Gaussian dynamics; at the active scales, structured "events" reminiscent of traveling waves and heteroclinic cycles appear to dominate; while the strongly damped small scales display intermittent behavior. The separation of scales and their dynamics is invariant as the length of the system increases, providing additional support for the extensivity of the spatiotemporally complex dynamics claimed in earlier works. We show also that the dynamics are spatially localized, discuss various correlation lengths, and demonstrate the existence of a characteristic interaction length for instantaneous influences. Our results motivate and advance the search for localized, low-dimensional models that capture the full behavior of spatially extended chaotic partial differential equations. (c) 1999 American Institute of Physics.  相似文献   

20.
乔吉超  Q Wang  D Crespo  杨勇  J M Pelletier 《中国物理 B》2017,26(1):16402-016402
Understanding mechanical relaxation, such as primary(α) and secondary(β) relaxation, is key to unravel the intertwined relation between the atomic dynamics and non-equilibrium thermodynamics in metallic glasses. At a fundamental level, relaxation, plastic deformation, glass transition, and crystallization of metallic glasses are intimately linked to each other, which can be related to atomic packing, inter-atomic diffusion, and cooperative atom movement. Conceptually, βrelaxation is usually associated with structural heterogeneities intrinsic to metallic glasses. However, the details of such structural heterogeneities, being masked by the meta-stable disordered long-range structure, are yet to be understood. In this paper, we briefly review the recent experimental and simulation results that were attempted to elucidate structural heterogeneities in metallic glasses within the framework of β relaxation. In particular, we will discuss the correlation amongβ relaxation, structural heterogeneity, and mechanical properties of metallic glasses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号