首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The present work represents a step in dealing with stellar structure using a pure geometric approach. Geometric field theory is used to construct a model for a spherically symmetric configuration. In this case, two solutions have been obtained for the field equations. The first represents an interior solution which may be considered as a pure geometric one in the sense that the tensor describing the material distributions is not a phenomenological object, but a part of the geometric structure used. A general equation of state for a perfect fluid, is obtained from, and not imposed on, the model. The second solution gives rise to Schwarzschild exterior field in its isotropic form. The two solutions are matched, at a certain boundary, to evaluate the constants of integration. The interior solution obtained shows that there are different zones characterizing the configuration: a central radiation dominant zone, a probable convection zone as a physical interpretation of the singularity of the model, and a corona like zone. The model may represent a type of main sequence stars. The present work shows that Einstein’s geometerization scheme can be extended to gain more physical information within material distribution, with some advantages.  相似文献   

4.
By combining the generalized exterior algebra of forms over a noncommutative algebra with the gauging of discrete directions and the associated Higgs fields, we consider the construction of the bosonic sector of left-right symmetric models of the form SU(2) L SU(2) R U(1). We see that within this formalism maximal use can be made of the gauge connection associated with the noncommutative graded algebra.  相似文献   

5.
An MCSCF method using single excitations is described. The wave-function is obtained by direct minimization. An illustrative calculation on LiH indicates that the method is appropriate for the calculation of one-electron properties, especially in bond-breaking geometries.  相似文献   

6.
A general geometric framework is devised in order to contain the presymplectic and Lagrangian formalisms as particular cases. We call these objectsconstrained dynamical systems, since their dynamics usually lead toconstraints. Their most elementary properties are studied, and several related structures, especially morphisms, are defined. In particular, a stabilization algorithm is performed. As a byproduct, the dynamics and constraints of the Lagrangian formalism (with the second-order condition) are intrinsically obtained.  相似文献   

7.
We analyse Noether's Second Theorem from a geometric viewpoint using the concepts of vector fields and forms along tangent bundle projections.  相似文献   

8.
The path-integral renormalization group and direct energy minimization method of practical first-principles electronic structure calculations for multi-body systems within the framework of the real-space finite-difference scheme are introduced. These two methods can handle higher dimensional systems with consideration of the correlation effect. Furthermore, they can be easily extended to the multicomponent quantum systems which contain more than two kinds of quantum particles. The key to the present methods is employing linear combinations of nonorthogonal Slater determinants (SDs) as multi-body wavefunctions. As one of the noticeable results, the same accuracy as the variational Monte Carlo method is achieved with a few SDs. This enables us to study the entire ground state consisting of electrons and nuclei without the need to use the Born-Oppenheimer approximation. Recent activities on methodological developments aiming towards practical calculations such as the implementation of auxiliary field for Coulombic interaction, the treatment of the kinetic operator in imaginary-time evolutions, the time-saving double-grid technique for bare-Coulomb atomic potentials and the optimization scheme for minimizing the total-energy functional are also introduced. As test examples, the total energy of the hydrogen molecule, the atomic configuration of the methylene and the electronic structures of two-dimensional quantum dots are calculated, and the accuracy, availability and possibility of the present methods are demonstrated.  相似文献   

9.
Hamilton-Dirac equations for a constrained Hamiltonian system are deduced from a variational principle. In the local problem for such systems an algorithm is proposed to obtain the final constraint manifold and the dynamical vector field on it using vector fields on the phase space. The global problem is solved in terms of fiber bundles associated with the problem.  相似文献   

10.
A novel probe and approach to the direct measurements of the plasma potential in a strong magnetic field is suggested. The principle of this method is to reduce the electron saturation current to the same magnitude as that of the ion saturation current. In this case, the floating potential of the probe becomes indentical to the plasma potential. This goal is attained by a shield, which screens off an adjustable part of the electron current from the probe collector due to the much smaller gyro-radius of the electrons. First systematic measurements have been perfomred in the CASTOR tokamak.  相似文献   

11.
The solutions of Skyrme's variational problem describe the structure of mesons in a field of weak energy. The problem consists in minimizing the corresponding energy among the functions from 3 toS 3 which have a fixed degree without making any symmetry assumptions. We prove the existence of minima and study their properties.  相似文献   

12.
13.
The shallow water acoustic channel is challenging to estimate and track due to rapid temporal fluctuations of its large delay spread. However, the impulse response and representations of its time-variability often exhibit a sparse structure that can be exploited to improve estimator performance. We propose a sparse reconstruction of the shallow water acoustic channel that employs a novel optimization metric combining the complex square root of the channel coefficients and a non-convex complex function based on the L2 estimation error. Our mixed norm formulation is mathematically equivalent to conventional L2 constrained L1 minimization, but fundamentally different in the non-convex topology we employ to solve for and track the optimal coefficients in real time directly over the complex field. Our estimation and tracking algorithm is designed for robustness with respect to the ill-conditioned nature of the data matrix, can smoothly handle different levels of sparsity, and is modeled to include delays due to multi-path and the Doppler spread induced by the channel. We present numerical evidence over simulated as well as field data to compare the performance of our method to conventional sparse reconstruction techniques.  相似文献   

14.
Parameter estimation in nonlinear models is a common task, and one for which there is no general solution at present. In the case of linear models, the distribution of forecast errors provides a reliable guide to parameter estimation, but in nonlinear models the facts that predictability may vary with location in state space, and that the distribution of forecast errors is expected not to be Normal, means that parameter estimation based on least squares methods will result in systematic errors. A new approach to parameter estimation is presented which focuses on the geometry of trajectories of the model rather than the distribution of distances between model forecast and the observation at a given lead time. Specifically, we test a number of candidate trajectories to determine the duration for which they can shadow the observations, rather than evaluating a forecast error statistic at any specific lead time(s). This yields insights into both the parameters of the dynamical model and those of the observational noise model. The advances reported here are made possible by extracting more information from the dynamical equations, and thus improving the balance between information gleaned from the structural form of the equations and that from the observations. The technique is illustrated for both flows and maps, applied in 2-, 3-, and 8-dimensional dynamical systems, and shown to be effective in a case of incomplete observation where some components of the state are not observed at all. While the demonstration of effectiveness is strong, there remain fundamental challenges in the problem of estimating model parameters when the system that generated the observations is not a member of the model class. Parameter estimation appears ill defined in this case.  相似文献   

15.
We present a general theoretical framework for a hybrid system that is composed of a quantum subsystem and a classical subsystem. We approach such a system with a simple canonical transformation which is particularly effective when the quantum subsystem is dynamically much faster than the classical counterpart, which is commonly the case in hybrid systems. Moreover, this canonical transformation generates a vector potential which, on one hand, gives rise to the familiar Berry phase in the fast quantum dynamics and, on the other hand, yields a Lorentz-like geometric force in the slow classical dynamics.  相似文献   

16.
Based upon Cartan's geometric formulation of differential equations, Harrison and Estabrook proposed a geometric approach for the symmetries of differential equations. In this Letter, we extend Harrison and Estabrook's approach to analyze the symmetries of differential-difference equations. The discrete exterior differential technique is applied in our approach. The Lie symmetry of (2+1)-dimensional Toda equation is investigated by means of our approach.  相似文献   

17.
Yi LiuZhi-guo Gui 《Optik》2012,123(23):2174-2178
Low-dose CT imaging has been particularly used in modern medical practice for its advantage on reducing the radiation dose to patients. However, excessive quantum noise is present in low dose X-ray imaging along with the decrease of the radiation dose; thus, there are obvious streak-like artifacts in reconstructed images. The statistical iterative reconstruction approach applied to the noisy sinogram before a filtered back-projection (FBP) is a resolution to deal with the noisy problem. In this paper, the statistical property of the noise sinogram was considered to achieve a satisfactory image reconstruction and a statistical iterative method with energy minimization was proposed to address the problem of streak-like artifacts. Simulations were performed and indicated that the proposed method could suppress noise and obviously decrease streak-like artifacts in reconstructed images.  相似文献   

18.
The purely algebraic notion of CQG algebra (algebra of functions on a compact quantum group) is defined. In a straightforward algebraic manner, the Peter-Weyl theorem for CQG algebras and the existence of a unique positive definite Haar functional on any CQG algebra are established. It is shown that a CQG algebra can be naturally completed to aC *-algebra. The relations between our approach and several other approaches to compact quantum groups are discussed.  相似文献   

19.
20.
Based on the transfer-matrix method, the spin transport properties through a graphene-based multi-barrier nanostructure with an exchange field and Rashba spin orbit coupling (SOC), have been investigated. It is found that if Rashba SOC equals to the exchange field, the multi-barrier nanostructure is an efficient way to achieve spin rotators and spin filters. In addition, it is also found that the shot noise of a spin state can be enhanced by electrostatic potential, and plateaus of the Fano factor is formed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号