首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Infrared spectra of deuterated monofluoroacetylene, DCCF, have been recorded in the region between 320 and 850 cm?1 at an effective resolution ranging from 0.0024 to 0.0031 cm?1. In total, 6650 rotation vibration transitions were assigned to 37 bands involving the bending states with v4 + v5 and |l4+l5|, respectively, up to 3, allowing the characterisation of the ground state and of 18 vibrationally excited states. The vν5 bending fundamental has been studied for the first time. In addition, the difference band v3v4 has been detected and analysed. All the assigned transitions have been fitted simultaneously by adopting a model Hamiltonian that takes into account the vibration and rotation l?type resonances. Rotational transitions in the ground and in bending excited states reported in the literature have been included in the global analysis. The set of 57 derived spectroscopic parameters reproduces 6130 infrared and 90 microwave and millimetre?wave transitions satisfactorily with root mean square values of 5.3 × 10?4 cm?1 and 77 kHz, respectively.  相似文献   

3.
The fundamental bending ro-vibrational bands and a number of overtone, combination and hot bands of 13C2HD have been recorded by Fourier transform infrared spectroscopy in the range 450–2100 cm?1. In addition, the ν 5 ν 4 band, centred at 164.65 cm?1, has been identified in the spectrum of 13C2H2. The data were analysed simultaneously in a global fit that has provided very accurate rotational and vibrational parameters for the ground and vibrationally excited states.  相似文献   

4.
《Molecular physics》2012,110(21-22):2621-2632
The vibration–rotation spectra of 13C substituted acetylene, 13C2H2, have been recorded in the region between 60 and 2600?cm?1 at an effective resolution ranging from 0.001 to 0.006?cm?1. Three different instruments were used to collect the experimental data in the extended spectral interval investigated. In total 9529 rotation vibration transitions have been assigned to 101 bands involving the bending states up to v tot?=?v 4?+?v 5?=?4, allowing the characterization of the ground state and of 33 vibrationally excited states. All the bands involving states up to v tot?=?3 have been analyzed simultaneously by adopting a model Hamiltonian which takes into account the vibration and rotation l-type resonances. The derived spectroscopic parameters reproduce the transition wavenumbers with a RMS value of the order of the experimental uncertainty. Using the same model, larger discrepancies between observed and calculated values have been obtained for transitions involving states with v tot?=?4. These could be satisfactorily reproduced only by adopting a set of effective constants for each vibrational manifold, in addition to the previously determined parameters, which were constrained in the analysis.  相似文献   

5.
The infrared spectrum of 12C2HD has been observed between 1800 and 4700?cm?1 by Fourier transform spectroscopy. The ν1, ν2 and ν3 absorption bands and the associated hot and combination bands involving the bending modes up to υt?=?υ4?+?υ5?=?2 have been investigated. Altogether, 60 vibrational bands were analysed, leading to the spectroscopic characterization of 31 vibrationally excited states. Several perturbations have been observed, but the transitions involving the perturbing states have not been detected. As a consequence, an appropriate treatment of the vibrational or ro-vibrational interactions has not been possible. A tentative assignment of the perturbing states has been proposed. Eventually, global fits for each fundamental vibration and its associated cold and hot bands have been performed.  相似文献   

6.
7.
8.
The combination band ν5 + ν12 of ethylene, C2H4, has been recorded for the first time with a high resolution Fourier transform spectrometer Bruker IFS 125HR. Assignments of transitions and preliminary rotational analysis are made. Two models (Hamiltonian of the isolated vibrational state and Hamiltonian that takes into account resonance interactions) are used. Influence of the local resonance interactions on the parameters and reproduction power of the models is discussed.  相似文献   

9.
Thirty four cold bands and 37 hot bands are reported from the high resolution FT absorption spectrum of 13CH12CH, all leading to vibrational states located between 3800 and 6750?cm?1. Each band has been vibrationally assigned and rotationally analysed. The band centres and rotational constants are listed.  相似文献   

10.
The infrared active ν7 and ν5 fundamentals of disilane, coupled by an x,y Coriolis interaction, have been analysed on a Fourier transform spectrum between 2120 and 2225?cm?1, at the Doppler limited spectral resolution. A Fermi resonance with 2ν 2?+?ν9 affects the Δ K?=?1 side of ν7, and both ν7 and ν5 show the effects of several additional localized perturbations. Line splittings in the ν5 transitions are not observed, showing that the torsional splitting in the ν5 excited state and in the vibrational ground state are almost equal. The intrinsic torsional splitting of ν7 is found to be smaller than in the ground vibrational state by 0.0085?cm?1. This splitting value and those found for the other two infrared active degenerate fundamentals, ν8 and ν9, follow the trend expected from our theoretical predictions. Exploratory numerical calculations show that the decrease of the torsional splittings, observed in the fundamental degenerate vibrational states of disilane, can actually be accounted for by the head–tail and torsional Coriolis coupling of all the degenerate vibrational fundamentals, in several torsional states.  相似文献   

11.
Measurements of the rotational spectrum of the C4v molecule IOF5 are reported for the excited vibrational state v11(E) = 1 for the transitions J13 ← 12, 14 ← 13, 16 ← 15, and 17 ← 16 (55–72 GHz) including the observation of the kl = −1 (q), l-doubling effect. Detailed assignments of the E-state spectrum are presented based on the overlapping quadrupole structure. These data are analyzed together with earlier results for the excited vibrational state v6(B1) = 1 to give information concerning the ν6(B1)-ν11(E) Coriolis interaction and the (Δl, Δk) = (2, 2) (q+) and (2, −2) (q)l-resonance interactions. It is found that q11 = −2.57(10) MHz, |q11+| = 0.094(20) MHz, Δ = ν6ν11 = 45.2(7) cm, ζ11,11z = +0.18(1) and |ζ6,11y| = 0.73(4).  相似文献   

12.
The He2 band systems 4pπ i3Πg → 2s a3Σu+ and 5pπ l3Πg → 2s a3Σu+ are described in detail, and the i and l states characterized. A number of significant perturbations in the i and l states are identified, and the possible perturber states discussed. The following molecular constants (cm?1) are reported:
  相似文献   

13.
The type-C out-of-plane bending fundamental ν4 (near 926 cm−1) in the infrared spectrum of gaseous difluoroborane, HBF2, has been recorded at high resolution. Rotational and centrifugal distortion constants have been obtained for the two isotopic species H10BF2 and H11BF2 in both the ground and 41 levels. A small rotational perturbation in the 41 level of H11BF2 has allowed an estimate of the position of the ν6 fundamental, which so far has not been observed directly.  相似文献   

14.
The type-B totally symmetric stretching fundamental ν2 (near 1164 cm−1) of difluoroborane has been recorded. Rotational and centrifugal distortion constants have been evaluated for the two isotopic species H10BF2 and H11BF2, in both the ground and 21 levels. The spectrum has been found to be regular, with no perturbations and no new information on the position of the missing fundamental ν6.  相似文献   

15.
The emission spectrum of the B3Πg-A3Σu+ system of the 15N2 molecule was recorded between 3500 and 12 500 cm−1 with a high-resolution Fourier spectrometer. Twelve bands with 0 < v′ < 5 and 0 < v″ < 9 are analyzed. The molecular parameters of the B3Πg and A3Σu+ states are obtained by a complete fitting procedure. Derived values of equilibrium constants are deduced; the Franck-Condon factors are calculated for the B-A system of 15N2.  相似文献   

16.
17.
A comprehensive model for predicting rotational frequency components in various v10 vibrational levels of propyne was developed. A number of components of the rotational spectra in the ground and v10 = 1, 2, 3, 4 excited vibrational states of propyne in the frequency range 17–70 GHz have been obtained. Molecular constants for these vibrationally excited states have been determined from more than 100 observed rotational transitions. From these experimentally observed components and a model based upon first principals for C3v molecules, rotational constants have been expressed in a form which enables one to predict rotational components for vibrational levels for propyne up to v10 = 5. The model also appears to be useful in predicting rotational components in more highly excited vibrational levels but data were not available for comparison with the theory. Experimentally measured frequencies are presented and compared with those calculated using the results of basic perturbation theory.  相似文献   

18.
The Fourier transform infrared spectrum of 1-phosphapropyne CH3CP has been recorded in the region 1470–1580 cm−1 with a resolution of 0.01 cm−1, and the ν2 band centered at 1558.7416(28) cm−1 was analyzed. The 689 observed transitions with J′ and K′ values up to 69 and 8, respectively, were assigned. A set of the spectroscopic constants determined for the upper v2 = 1 state reproduced the experimental wavenumbers with an rms error of 0.0025 cm−1. No significant perturbations were observed. The ν2 + ν8ν8 hot band, centered at 1553.5492(35) cm−1, was also analyzed. The upper state constants determined from the 341 observed transitions with J′ and K′ values up to 53 and 6, respectively, reproduced the experimental wavenumbers with an rms error of 0.0047 cm−1.  相似文献   

19.
The absorption spectrum of dideuteroacetylene has been recorded by intracavity laser absorption spectroscopy (ICLAS) in the 10 200–12 500cm?1 spectral region. Among 25 absorption bands of 12C2D2 rotationally analysed in this spectral region, 17 are newly observed. They include one IIu+ g and thirteen Σ+ u+ g bands starting from the vibrational ground state and eleven hot bands from the V 4 = 1 and V 5 = 1 lower states. The rotational structure of two excited levels is affected by a strongly J-dependent interaction with a perturber which induces intensity transfer to extra lines. The coupling is identified as a I-resonance interaction with δu dark states and the vibrational assignment of the perturbers is discussed. Two Σ-Σ bands of the 12C13 CD2 species, present in natural abundance in the sample, could also be identified and rotationally analysed. Most of the corresponding excited vibrational levels of 12C2D2 were unambiguously assigned using the polyad model [Herman, M., el idrissi, M. I., Pisarchik, A., Campargue, A., Gaillot, A.-C., Biennier, L., di lonardo, G. and Fusina, L., 1998, J. chem. Phys., 108, 1377] which allows vibrational energies and B V rotational constants to be predicted. In particular the previously highlighted 1/244 anharmonic resonance is confirmed by energy and intensity features in several {(V 1, V 2, V 3, V 4 = 0, V 5 = 0),(V 1 ?1, V 2 + 1, V 3 V 4 = 2, V 5 = 0)} dyads. Significant deviations between predicted and experimental energy levels are observed for a few levels and discussed.  相似文献   

20.
Abstract

Three new bands of the B 2Σ+X 2Σ+ system of 12C17O+ have been investigated using conventional spectroscopic techniques. The spectra were observed in a graphite hollow‐cathode lamp by discharging molecular oxygen (enriched in about 45% of the 17O2 isotope) under 1.0 Torr pressure. The rotational analysis of the 2–4, 2–5, and 2–6 bands was performed with the effective Hamiltonian of Brown (Brown et al., J. Mol. Spectrosc. 1979; 74: 294–318). Molecular constants were derived from a merge calculation, including both the current wavenumbers and the spectroscopic data published by the authors previously. The principal equilibrium constants for the ground state of 12C17O+ are ωe=2185.9658(84), ωe x e = 14.7674(11), B e=1.927001(38), αe=1.8236(22)×10?2, γe=?0.331(28)×10?4, D e=6.041(12)×10?6, βe=0.100(31)×10?7 cm?1, and the equilibrium constants for the excited state are σe=45876.499(15), ωe=1712.201(12), ωe x e=27.3528(39), B e=1.754109(35), αe=2.8706(57)×10?2, γe = ?1.15(19)×10?4, D e=7.491(20)×10?6, βe=2.13(12)×10?7, γe = 2.0953(97)×10?2, and αγe=?9.46(59)×10?4 cm?1, respectively. Rydberg–Klein–Rees potential energy curves were constructed for the B 2Σ+ and X 2Σ+ states of this molecule, and Franck–Condon factors were calculated for the vibrational bands of the BX system.  相似文献   

StateωeeBeαere (A?)
i3Πg1707.9535.007.242g0.2221.0782
l2Πg1703.8634.977.22640.21881.0794
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号