首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of third grade, partial slip and other thermophysical parameters on the steady flow, heat and mass transfer of viscoelastic third grade fluid past an infinite vertical insulated plate subject to suction across the boundary layer has been investigated. The space occupying the fluid is porous. The momentum equation is characterized by a highly nonlinear boundary value problem in which the order of the differential equation exceeds the number of available boundary conditions. An efficient numerical scheme of midpoint technique with Richardson’s extrapolation is employed to solve the governing system of coupled nonlinear equations of momentum, energy and concentration. Numerical calculations were carried out for different values of various interesting non-dimensional quantities in the slip flow regime with heat and mass transfer and were shown with the aid of figures. The values of the wall shear stress, the local rate of heat and mass transfers were obtained and tabulated. The analysis shows that as the fluid becomes more shear thickening, the momentum boundary layer decreases but the thermal boundary layer increases; the magnetic field strength is found to decrease with an increasing temperature distribution when the porous plate is insulated. The consequences of increasing the permeability parameter and Schmidt number decrease both the momentum and concentration boundary layer thicknesses respectively whereas an increase in the thermal Grashof number gives rise to the thermal boundary layer thickness.  相似文献   

2.
Bikash Sahoo 《Meccanica》2010,45(3):319-330
The effects of partial slip on the steady flow and heat transfer of an electrically conducting, incompressible, third grade fluid past a horizontal plate subject to uniform suction and blowing is investigated. Two distinct heat transfer problems are studied. In the first case, the plate is assumed to be at a higher temperature than the fluid; and in the second case, the plate is assumed to be insulated. The momentum equation is characterized by a highly nonlinear boundary value problem in which the order of the differential equation exceeds the number of available boundary conditions. Numerical solutions for the governing nonlinear equations are obtained over the entire range of physical parameters. The effects of slip, magnetic parameter, non-Newtonian fluid characteristics on the velocity and temperature fields are discussed in detail and shown graphically. It is interesting to find that the velocity and the thermal boundary layers decrease with an increase in the slip, and as the slip increases to infinity, the flow behaves as though it were inviscid.  相似文献   

3.
A steady stagnation-point flow of an incompressible Maxwell fluid towards a linearly stretching sheet with active and passive controls of nanoparticles is studied numerically. The momentum equation of the Maxwell nanofluid is inserted with an external velocity term as a result of the flow approaches the stagnation point. Conventional energy equation is modified by incorporation of nanofluid Brownian and thermophoresis effects. The condition of zero normal flux of nanoparticles at the stretching surface is defined to impulse the particles away from the surface in combination with nonzero normal flux condition. A hydrodynamic slip velocity is also added to the initial condition as a component of the entrenched stretching velocity. The governing partial differential equations are then reduced into a system of ordinary differential equations by using similarity transformation. A classical shooting method is applied to solve the nonlinear coupled differential equations. The velocity, temperature and nanoparticle volume fraction profiles together with the reduced skin friction coefficient, Nusselt number and Sherwood number are graphically presented to visualize the effects of particular parameters. Temperature distributions in passive control model are consistently lower than in the active control model. The magnitude of the reduced skin friction coefficient, Nusselt number and Sherwood number decrease as the hydrodynamic slip parameter increases while the Brownian parameter has negligible effect on the reduced heat transfer rate when nanoparticles are passively controlled at the surface. It is also found that the stagnation parameter contributes better heat transfer performance of the nanofluid under both active and passive controls of normal mass flux.  相似文献   

4.
Two‐dimensional steady, laminar, and incompressible flow of a micropolar fluid in a channel with no‐slip at one wall and constant uniform injection through the other wall is considered for different values of the Reynolds number R. The main flow stream is superimposed by constant injection velocity at the porous wall. The micropolar model introduced by Eringen is used to describe the working fluid. An extension of Berman's similarity transformations is used to reduce governing equations to a set of nonlinear coupled ordinary differential equations (ODEs) in dimensionless form. An algorithm based on finite difference method is employed to solve these ODEs and Richardson's extrapolation is used to obtain higher order accuracy. It has been found that the magnitude of shear stress increases strictly at the impermeable wall whereas it decreases steadily at the permeable wall, by increasing the injection velocity. The maximum value of streamwise velocity and that of the microrotation both increase with increasing the magnitude of R. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
Non-Newtonian effects in a channel with moving wall indentations are assessed numerically by a finite volume method for solving the unsteady incompressible Navier-Stokes equations and using a power-law model exhibiting shear thinning viscosity and Casson's model as the constitutive equations for the non-Newtonian fluid. The computations show that for a non-Newtonian fluid, there are differences in the velocity profiles and in the structure and size of the reversed flow regions as compared with the corresponding Newtonian fluid. The comparison of non-Newtonian and Newtonian wall shear stress reveals a slight decrease in the magnitude on the average for the non-Newtonian case, eventually resulting in the strength of the “wave train” being slightly weaker than those corresponding to a Newtonian fluid.  相似文献   

6.
The present paper is concerned with the steady thin film flow of the Sisko fluid on a horizontal moving plate, where the surface tension gradient is a driving mechanism. The analytic solution for the resulting nonlinear ordinary differential equation is obtained by the Adomian decomposition method (ADM). The physical quantities are derived including the pressure profile, the velocity profile, the maximum residue time, the stationary points, the volume flow rate, the average film velocity, the uniform film thickness, the shear stress, the surface tension profile, and the vorticity vector. It is found that the velocity of the Sisko fluid film decreases when the fluid behavior index and the Sisko fluid parameter increase, whereas it increases with an increase in the inverse capillary number. An increase in the inverse capillary number results in an increase in the surface tension which in turn results in an increase in the surface tension gradient on the Sisko fluid film. The locations of the stationary points are shifted towards the moving plate with the increase in the inverse capillary number, and vice versa locations for the stationary points are found with the increasing Sisko fluid parameter. Furthermore, shear thinning and shear thickening characteristics of the Sisko fluid are discussed. A comparison is made between the Sisko fluid film and the Newtonian fluid film.  相似文献   

7.
This investigation deals with the effects of slip, magnetic field, and non- Newtonian flow parameters on the flow and heat transfer of an incompressible, electrically conducting fourth-grade fluid past an infinite porous plate. The heat transfer analysis is carried out for two heating processes. The system of highly non-linear differential equations is solved by the shooting method with the fourth-order Runge-Kutta method for moderate values of the parameters. The effective Broyden technique is adopted in order to improve the initial guesses and to satisfy the boundary conditions at infinity. An exceptional cross-over is obtained in the velocity profile in the presence of slip. The fourth-grade fluid parameter is found to increase the momentum boundary layer thickness, whereas the slip parameter substantially decreases it. Similarly, the non-Newtonian fluid parameters and the slip have opposite effects on the thermal boundary layer thickness.  相似文献   

8.
In this paper the problem of momentum and heat transfer in a thin liquid film of power-law fluid on an unsteady stretching surface has been studied. Numerical solutions are obtained for some representative values of the unsteadiness parameter S and the power-law index n for a wide range of the generalized Prandtl number, 0.001 ≤ Pr ≤ 1000. Typical temperature and velocity profiles, the dimensionless film thickness, free-surface temperature, and the surface heat fluxes are presented at selected controlling parameters. The results show that increasing the value of n tends to increase the boundary-layer thickness and broadens the temperature distributions. The free-surface temperature of a shear thinning fluid is larger than that of a Newtonian fluid, but the opposite trend is true for a shear thickening fluid. For small generalized Prandtl numbers, the surface heat flux increases with a decrease in n, but the impacts of n on the heat transfer diminish for Pr greater than a moderate value (approximately 1 ≤ Pr ≤ 10, depending on the magnitude of S).  相似文献   

9.
A steady two-dimensional magnetohydrodynamic stagnation-point flow of an electrically conducting fluid and heat transfer with thermal radiation of a nanofluid past a shrinking and stretching sheet is investigated numerically. The model used for the nanofluid incorporates the effects of the Brownian motion and thermophoresis. A similarity transformation is used to convert the governing nonlinear boundary-layer equations into coupled higher-order nonlinear ordinary differential equations. The result shows that the velocity, temperature, and concentration profiles are significantly influenced by the Brownian motion, heat radiation, and thermophoresis particle deposition.  相似文献   

10.
" Analysis is performed to study the slip effects on the peristaltic flow of non-Newtonian fluid in a curved channel with wall properties. The resulting nonlinear partial differential equations are transformed to a single ordinary differential equation in a stream function by using the assumptions of long wavelength and low Reynolds number. This differential equation is solved numerically by employing the built-in routine for solving nonlinear boundary value problems (BVPs) through the software Mathematica. In addition, the analytic solutions for small Deborah number are computed with a regular perturbation technique. It is noticed that the symmetry of bolus is destroyed in a curved channel. An intensification in the slip effect results in a larger magnitude of axial velocity. Further, the size and circulation of the trapped boluses increase with an increase in the slip parameter. Different from the case of planar channel, the axial velocity profiles are tilted towards the lower part of the channel. A comparative study between analytic and numerical solutions shows excellent agreement.  相似文献   

11.
The rheological characterisation of concentrated shear thickening materials suspensions is challenging, as complicated and occasionally discontinuous rheograms are produced. Wall slip is often apparent and when combined with a shear thickening fluid the usual means of calculating rim shear stress in torsional flow is inaccurate due to a more complex flow field. As the flow is no longer “controlled”, a rheological model must be assumed and the wall boundary conditions are redefined to allow for slip. A technique is described where, by examining the angular velocity response in very low torque experiments, it is possible to indirectly measure the wall slip velocity. The suspension is then tested at higher applied torques and different rheometer gaps. The results are integrated numerically to produce shear stress and shear rate values. This enables the measurement of true suspension bulk flow properties and wall slip velocity, with simple rheological models describing the observed complex rheograms.  相似文献   

12.
An analysis is presented to describe the boundary layer flow and heat transfer towards a porous exponential stretching sheet. Velocity and thermal slips are considered instead of no-slip conditions at the boundary. Thermal radiation term is incorporated in the temperature equation. Similarity transformations are used to convert the partial differential equations corresponding to the momentum and heat equations into highly non-linear ordinary differential equations. Numerical solutions of these equations are obtained by shooting method. It is found that the fluid velocity and temperature decrease with increasing slip parameter. Temperature is found to decrease with an increase of thermal slip parameter. Thermal radiation enhances the effective thermal diffusivity and the temperature rises.  相似文献   

13.
The continuous extrusion of a metallocene linear low-density polyethylene through a transparent capillary die with and without slip was analyzed in this work by rheometrical measurements and particle image velocimetry (PIV). For this reason, a comparison was made between the rheological behaviors of the pure polymer and blended with a small amount of fluoropolymer polymer processing additive. Very good agreement was found between rheometrical and PIV measurements. The pure polymer exhibited stick-slip instabilities with nonhomogeneous slip at the die wall, whereas the blend showed stable flow. The slip velocity was measured directly from the velocity profiles and was negligible for the pure polymer before the stick-slip but increased monotonously as a function of the shear stress for the blend. The flow curves and the slip velocity as a function of the shear stress deviated from a power law and were well fitted by continuous “kink” functions. Comparison of PIV data with rheometrical ones permitted a direct proof of the basic assumption of the Mooney theory. Finally, the analysis of the velocity profiles showed that there is a maximum in the contribution of slip to the average fluid velocity, which is interpreted as the impossibility for the velocity profile to become plug like in the presence of shear thinning.  相似文献   

14.
In this paper the inhomogeneous response of the (two species) VCM model (Vasquez et al., A network scission model for wormlike micellar solutions. I. Model formulation and homogeneous flow predictions, J. Non-Newtonian Fluid Mech. 144 (2007) 122–139) is examined in steady rectilinear pressure-driven flow through a planar channel. This microstructural network model incorporates elastically active network connections that break and reform mimicking the behavior of concentrated wormlike micellar solutions. The constitutive model, which includes non-local effects arising from Brownian motion and from the coupling between the stress and the microstructure (finite length worms), consists of a set of coupled nonlinear partial differential equations describing the two micellar species (a long species ‘A’ and a shorter species ‘B’) which relax due to reptative and Rouse-like mechanisms as well as rupture of the long micellar chains. In pressure-driven flow, the velocity profile predicted by the VCM model deviates from the regular parabolic profile expected for a Newtonian fluid and exhibits a complex spatial structure. An apparent slip layer develops near the wall as a consequence of the microstructural boundary conditions and the shear-induced diffusion and rupture of the micellar species. Above a critical pressure drop, the flow exhibits shear banding with a high shear rate band located near the channel walls. This pressure-driven shear banding transition or ‘spurt’ has been observed experimentally in macroscopic and microscopic channel flow experiments. The detailed structure of the shear banding profiles and the resulting flow curves predicted by the model depend on the magnitude of the dimensionless diffusion parameter. For small channel dimensions, the solutions exhibit ‘non-local’ effects that are consistent with very recent experiments in microfluidic geometries (Masselon et al., Influence of boundary conditions and confinement on non local effects in flows of wormlike micellar systems, Phys. Rev. E 81 (2010) 021502).  相似文献   

15.
This paper presents an analysis of the combined electro-osmotic and pressure-driven axial flows of viscoelastic fluids in a rectangular microchannel with arbitrary aspect ratios. The rheological behavior of the fluid is described by the complete form of Phan-Thien–Tanner (PTT) model with the Gordon–Schowalter convected derivative which covers the upper convected Maxwell, Johnson–Segalman and FENE-P models. Our numerical simulation is based on the computation of 2D Poisson–Boltzmann, Cauchy momentum and PTT constitutive equations. The solution of these governing nonlinear coupled set of equations is obtained by using the second-order central finite difference method in a non-uniform grid system and is verified against 1D analytical solution of the velocity profile with less than 0.06% relative error. Also, a parametric study is carried out to investigate the effect of channel aspect ratio (width to height), wall zeta potential and the Debye–Hückel parameter on 2D velocity profile, volumetric flow rate and the Poiseuille number in the mixed EO/PD flows of viscoelastic fluids with different Weissenberg numbers. Our results show that, for low channel aspect ratios, the previous 1D analytical models underestimate the velocity profile at the channel half-width centerline in the case of favorable pressure gradients and overestimate it in the case of adverse pressure gradients. The results reveal that the inapplicability of the Debye–Hückel approximation at high zeta potentials is more significant for higher Weissenberg number fluids. Also, it is found that, under the specified values of electrokinetic parameters, there is a threshold for velocity scale ratio in which the Poiseuille number is approximately independent of channel aspect ratio.  相似文献   

16.
In this article, free convection heat transfer over a vertical cylinder with variable surface temperature distributions in a porous medium is analyzed. It is assumed that the fluid and solid phases are not in local thermal equilibrium and, therefore, a two-temperature model of heat transfer is applied. The coupled momentum and energy equations are presented and then they are transformed into ordinary differential equations. The similarity equations are solved numerically. The resulting velocity, streamlines, temperature distributions for fluid and solid phases are shown for different values of parameters entering into the problem. The calculated values of the local Nusselt numbers for both solid and fluid phases are also shown.  相似文献   

17.
The effect of shear thinning on the stability of the Taylor–Couette flow is explored for a Carreau–Bird fluid in the narrow‐gap limit. The Galerkin projection method is used to derive a low‐order dynamical system from the conservation of mass and momentum equations. In comparison with the Newtonian system, the present equations include additional non‐linear coupling in the velocity components through the viscosity. It is found that the critical Taylor number, corresponding to the loss of stability of the circular Couette flow, becomes lower as the shear‐thinning effect increases. That is, shear thinning tends to precipitate the onset of Taylor vortex flow, which coincides with the onset of a supercritical bifurcation. Comparison with existing measurements of the effect of shear thinning on the critical Taylor and wave numbers show good agreement. The Taylor vortex cellular structure loses its stability in turn, as the Taylor number reaches a critical value. At this point, an inverse Hopf bifurcation emerges. In contrast to Newtonian flow, the bifurcation diagrams exhibit a turning point that sharpens with shear‐thinning effect. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper, a steady magnetohydrodynamic (MHD) flow of a dusty incompressible electrically conducting Oldroyd 8-constant fluid through a circular pipe is examined with considering the ion slip effect. A constant pressure gradient in the axial direction and an external uniform magnetic field in the perpendicular direction are applied. A numerical solution is obtained for the governing nonlinear momentum equations by using finite differences. The effect of the ion slip, the non-Newtonian fluid characteristics, and the particle-phase viscosity on the velocity, volumetric flow rates, and skin friction coefficients of both the fluid and particle phases is reported.  相似文献   

19.
An analysis has been performed to study the unsteady laminar compressible boundary layer governing the hypersonic flow over a circular cone at an angle of attack near a plane of symmetry with either inflow or outflow in the presence of suction. The flow is assumed to be steady at time t=0 and at t>0 it becomes unsteady due to the time-dependent free stream velocity which varies arbitrarily with time. The nonlinear coupled parabolic partial differential equations under boundary layer approximations have been solved by using an implicit finite-difference method. It is found that suction plays an important role in stabilising the fluid motion and in obtaining unique solution of the problem. The effect of the cross flow parameter is found to be more pronounced on the cross flow surface shear stress than on the streamwise surface shear stress and surface heat transfer. Beyond a certain value of the cross flow parameter overshoot in the cross flow velocity occurs and the magnitude of this overshoot increases with the cross flow parameter. The time variation of the streamwise surface shear stress is more significant than that of the cross flow surface shear stress and surface heat transfer. The suction and the total enthalpy at the wall exert strong influence on the streamwise and cross flow surface shear stresses and the surface heat transfer except that the effect of suction on the cross flow surface shear stress is small.  相似文献   

20.
The present paper is concerned with a class of exact solutions to the steady Navier-Stokes equations for the incompressible Newtonian viscous fluid flow motion due to a porous disk rotating with a constant angular speed. The three-dimensional equations of motion are treated analytically yielding derivation of exact solutions with suction and injection through the surface included. The well-known thinning/thickening flow field effect of the suction/injection is better understood from the exact velocity equations obtained. Making use of this solution, analytical formulas corresponding to the permeable wall shear stresses are extracted.Interaction of the resolved flow field with the surrounding temperature is further analyzed via the energy equation. As a result, exact formulas are obtained for the temperature field which take different forms depending on whether suction or injection is imposed on the wall. The impacts of several quantities are investigated on the resulting temperature field. In accordance with the Fourier‘s heat law, a constant heat transfer from the porous disk to the fluid takes place. Although the influence of dissipation varies, suction enhances the heat transfer rate as opposed to the injection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号