首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this work, we develop a theory of thermoelectric transport properties in two-dimensional semiconducting quantum well structures. Calculations are performed for n-type 0.1 wt.% CuBr-doped Bi2Se3/Bi2Te3/Bi2Se3 and p-type 3 wt.% Te-doped Sb2Te3/Bi2Te3/Sb2Te3 quantum well systems in the temperature range 50–600 K. It is found that reducing the well thickness has a pronounced effect on enhancing the thermoelectric figure of merit (ZT). For the n-type Bi2Se3/Bi2Te3/Bi2Se3 with 7 nm well width, the maximum value of ZT is estimated to be 0.97 at 350 K and for the p-type Sb2Te3/Bi2Te3/Sb2Te3 with well width 10 nm the highest value of the ZT is found to be 1.945 at 440 K. An explanation is provided for the resulting higher ZT value of the p-type system compared to the n-type system.  相似文献   

2.
刘凤丽  蒋刚  白丽娜  孔凡杰 《物理学报》2011,60(3):37104-037104
本文采用基于密度泛函理论的第一性原理全势能线性缀加平面波方法(FLAPW),分析了Bi2Te3-xSex体系中各原子自旋轨道耦合(SOI)的p1/2修正对体系性质的影响,并对Bi2Te3-xSex(x≤3)同晶化合物的电子特性进行系统的理论研究,首次计算出Bi2S 关键词: 2Te3-xSex(x≤3)同晶化合物')" href="#">Bi2Te3-xSex(x≤3)同晶化合物 第一性原理 电子结构 自旋轨道耦合  相似文献   

3.
The relation between the concentration of free charge carriers and the concentration of copper atoms in Bi2Te3 single crystals doped with copper over a wide range of concentrations has been investigated, with the aim of clarifying the existence of inactive Cu ions. Changes in the concentration of free charge carriers arising from Cu-doping of the melt with that induced by electrochemical intercalation of copper are compared. Models of possible defect structures are proposed for both doped and intercalated single crystals of Bi2Te3.  相似文献   

4.
The measurements of the absolute values of the thermopower and of the relative electrical resistance have been performed for n type Bi2Te3 under hydrostatic pressure up to 9 GPa at room temperature. Under pressures exceeding 5 GPa and up to the phase transition (at 7 GPa), the samples with the charge carrier density below 10?19 cm?3 exhibit an anomalous growth of the thermopower. For the purest sample (n = 10?18 cm?3), the thermopower is as high as +150 μV/K. The pressure dependence of the electrical resistance for n-Bi2Te3 does not exhibit any anomalies up to the pressure corresponding to the phase transition (7 GPa). Thus, the state with the giant thermoelectric efficiency is found in Bi2Te3 under pressure before the phase transition.  相似文献   

5.
《Current Applied Physics》2015,15(3):261-264
Bismuth telluride (Bi2Te3) thin films were electrodeposited at room temperature from nitric baths in the presence of a surfactant, cetyltrimethylammonium bromide (CTAB). Nearly stoichiometric Bi2Te3 thin films were obtained from electrolytes containing 7.5 mM Bi(NO3)3. The surface morphology and mechanical properties of the electrodeposited thin film were improved by the addition of CTAB to the electrolyte, while the electrical and thermoelectric properties were preserved. Post-deposition annealing in a reducing environment did not improve the electrical and thermoelectric properties, possibly because the change in the microstructure of the Bi2Te3 thin film was too small.  相似文献   

6.
This paper reports our scanning tunneling microscopy and spectroscopy (STM/STS) study of double-walled and multi-walled carbon nanotubes (CNTs) of different diameter deposited on Bi2Te3 (narrow gap semiconductor). The approximate diameter of the studied double-walled and multi-walled CNTs was 2 nm and 8 nm, respectively. Crystalline Bi2Te3 was used as a substrate to enhance the contrast between the CNTs and the substrate in the STS measurements performed to examine peculiarities of CNT morphology, such as junctions, ends or structural defects, in terms of their electronic structure.   相似文献   

7.
By means of ab initio molecular dynamics calculations, we have studied the local structures of liquid and amorphous Si3Sb2Te3. The results show that all the constitute elements in liquid Si3Sb2Te3 are octahedrally coordinated. While in amorphous state, Sb and Te atoms are mainly octahedrally coordinated and Si atoms are mainly tetrahedrally coordinated. In both states, Si is mainly homo-bonded by Si. Finally, we proposed a phase separation model for liquid and amorphous Si3Sb2Te3, which is responsible for the good performance of Si3Sb2Te3 alloy as a phase change material.  相似文献   

8.
9.
The thermoelectric properties of the multicomponent solid solutions Bi2?x SbxTe3?y?z SeySz with substitutions of atoms in both sublattices of Bi2Te3 were studied. The data obtained in studies of the galvanomagnetic effects in weak magnetic fields were used to properly take into account the change in the carrier scattering mechanisms due to the substitutions Sb → Bi, Se, and S → Te in the solid solutions. The mobility μ0 with inclusion of the degeneracy, the effective density-of-states mass m/m 0, and the lattice thermal conductivity κL were calculated. An analysis was carried out for the quantities μ0, m/m 0, and κL in the solid solutions under study as functions of the composition, carrier concentration, and temperature.  相似文献   

10.
Abstract

Single crystals of (Sb0.75Bi0.25)2-xMnxTe3 (x = 0.0–0.05) were characterized by X-ray diffraction, measurements of reflectance in the plasma resonance frequency region, Hall coefficient, electrical conductivity, and Seebeck coefficient. It was found that Mn atoms in the crystal structure of Sb1.5Bi0.5Te3 behave like acceptors; the increase in the hole concentration is explained by the formation of substitutional defects of Mn'Sb and Mn'Bi in the crystal lattice of the studied crystals.  相似文献   

11.
Thermoelectric properties of La or Ce-doped Bi2Te3 alloys were systematically investigated by ab initio calculations of electronic structures and Boltzmann transport equations. The Seebeck coefficient of p-type LaBi7Te12 and La2Bi6Te12 was larger than that of Bi2Te3, because La doping increased the effective mass of carriers. On the other hand, the electrical conductivity of LaBi7Te12 and La2Bi6Te12 decreased, which caused a reduction of power factor of these La-doped Bi2Te3 alloys in comparison with Bi2Te3. The influence of Ce doping on the band structure and thermoelectric properties of Bi2Te3 was similar to that of La doping. The theoretical calculation provided an insight into the transport properties of La or Ce-doped Bi2Te3-based thermoelectric materials.  相似文献   

12.
Device applications involving topological insulators (TIs) will require the development of scalable methods for fabricating TI samples with sub‐micron dimensions, high quality surfaces, and controlled compositions. Here we use Bi‐, Se‐, and Te‐bearing metalorganic precursors to synthesize TIs in the form of nanowires. Single crystal nanowires can be grown with compositions ranging from Bi2Se3 to Bi2Te3, including the ternary compound Bi2Te2Se. These high quality nanostructured TI compounds are suitable platforms for on‐going searches for Majorana fermions (Mourik et al., Science 336 , 1003 (2012) and Cook et al., Rev. B 86 , 155431 (2012) [1, 2]).

  相似文献   


13.
14.
Multilayer nanowire arrays of a new heterogeneous thermoelectric material, Bi2Te2Se/Te, were successfully fabricated by a template-assisted pulsed electrodeposition method. The nanowires were characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, high resolution transmission electron microscopy, and energy dispersive X-ray spectroscopy, respectively. The diameter of the nanowires is in the range of 60–85 nm. By adjusting the concentration of Te precursor, the length of the Te segment can be modulated. At sufficient low concentration of Te precursor, the phase composition of the other segment can even be changed from Bi2Te2Se to Bi2Se2Te. The formation and growth mechanisms of the nanowires were proposed.  相似文献   

15.
The lattice dynamics in as‐cast and nanocrystalline thermoelectric Bi2Te3 based p‐type and n‐type material were investigated using inelastic neutron scattering. Generalized densities of phonon states show substantial agreement between the lattice dynamics in as‐cast samples and previous studies. The lattice dynamics in the nanocrystalline materials differ significantly from its as‐cast counterparts in the acoustic phonon regime. In nanocrystalline p‐type and n‐type compounds, the average acoustic phonon group velocity was found to be reduced to 80(5)% and 95(2)% of the value in as‐cast material. It is argued that point‐defect and strain contrast scattering may play an important role for the understanding of lattice thermal conductivity in (nanocrystalline) Bi2Te3 based thermoelectrics beside the observed decrease of sound velocity. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

16.
The structure of Ge20Te80, Ge15Cu8Te77 and Ge15Cu5Te80 glasses was investigated by diffraction techniques and extended X-ray absorption fine structure measurements. Large structural models were generated by fitting experimental data by the reverse Monte Carlo simulation technique. In Ge20Te80 glass, both Ge and Te obey the 8−N rule, and the structure is built up of GeTe4 tetrahedra connected via Te–Te bonding or shared Te atoms connected to two Ge atoms. The coordination number of Te is significantly higher than 2 in Ge15Cu8Te77. The average coordination number of Cu is 3.41±1 in this alloy. In Ge15Cu5Te80 glass, Cu binds mostly to Te, while Cu–Cu bonding is significant in Ge15Cu8Te77.  相似文献   

17.
Tunneling measurements of dI/dV, d 2 I/dV 2, and d 3 I/dV 3 were formed along the C 3 axis (normally to layers) for Bi2Te3 and Sb2Te3 layered semiconductors in the temperature range 4.2<T>29 5 K. Temperature dependences of the forbidden band energy E g were obtained. The forbidden band energy in Bi2Te3 was 0.20 eV at room temperature and increased to 0.24 eV at T=4.2 K. The E g value for Sb2Te3 was 0.25 eV at 295 K and 0.26 eV at 4.2 K. The distance between the top of the higher valence band of light holes and the top of the valence band of heavy holes situated lower was found to be ΔE V≈19 meV in Bi2Te3; this distance was independent of temperature. The conduction bands of Bi2Te3 and Sb2Te3 each contain two extrema with distances between them of ΔE c≈25 and 30 meV, respectively.  相似文献   

18.
The spectrum of quasiparticles of Bi2Te2X (X = Te, Se, S) three-dimensional topological insulators has been theoretically studied in the GW approximation with the inclusion of the spin-orbit interaction in the construction of the Green’s function and self-energy. It has been shown that many-body corrections to the Kohn-Sham states in Bi2Te2X increase the fundamental band gap similar to conventional semiconductors. However, the band gap at the Γ point decreases in this case. Gaps in the quasiparticle spectrum obtained in agreement with the experimental data correspond to the difference between the minimum of the conduction band, which is located on the Γ-Z line, and the maximum of the valence band, which lies beyond the symmetric directions in the mirror plane.  相似文献   

19.
We have performed TDPAC-measurements to investigate the static quadrupole interaction of111Cd in the classic semimetal Sb. The coupling constant depends on the concentration of small amounts of metal admixtures. The only exception is the system Sb1–xAgx. The temperature dependence of the efg in the narrow gap semiconductors Sb2Te3 and Bi2Te3 is similar to that one in Te. In contrast to these results the efg in the III–VI-semiconductor In2Te3 is temperature independent.  相似文献   

20.
Local structure of AlSb2Te3 thin film was studied by experiments and theoretical calculations. Results show that both Sb and Te atoms are likely to be replaced by Al to form Al–Sb and Al–Te covalent bonds. At a smaller dopant concentration, Al atoms presumably incorporate into Sb2Te3 matrix by substitute Sb or Te atoms without spoiling its structural unit. Compared together with other reported data, for Al doping Sb2Te3 PCM material, optimizing Al content is a key criteria for its phase stability and electric performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号