首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 936 毫秒
1.
To investigate the effect of different disturbances in the upstream, we present numerical simulation of transition for a hypersonic boundary layer on a 5-degree half-angle blunt cone in a freestream with Mach number 6 at 1-degree angle of attack. Evolution of small disturbances is simulated to compare with the linear stability theory (LST), indicating that LST can provide a good prediction on the growth rate of the disturbance. The effect of different disturbances on transition is investigated. Transition onset distributions along the azimuthal direction are obtained with two groups of disturbances of different frequencies. It shows that transition onset is relevant to frequencies and amplitudes of the disturbances at the inlet, and is decided by the amplitudes of most unstable waves at the inlet. According to the characteristics of environmental disturbances in most wind tunnels, we explain why transition occurs leeside-forward and windside-aft over a circular cone at an angle of attack. Moreover, the indentation phenomenon in the transition curve on the leeward is also revealed.  相似文献   

2.
高超声速边界层转捩会使飞行器表面热流和摩阻增加3~5倍,极大影响高超声速飞行器的性能.波纹壁作为一种可能的推迟边界层转捩的被动控制方法,具有较强的工程应用前景.文章研究了不同高度和安装位置的波纹壁对来流马赫数6.5的平板边界层稳定性的影响.采用直接数值模拟(DNS)得到层流场,并在上游分别引入不同频率的吹吸扰动以研究波纹壁对扰动演化的作用.对于不同位置的波纹壁,探究了其与同步点相对位置对其作用效果的影响,与相同工况下光滑平板的扰动演化结果进行了对比,发现当快慢模态同步点位于波纹壁上游时,波纹壁会对该频率的第二模态扰动起到抑制作用.当同步点位于波纹壁之中或者下游时,波纹壁对扰动的作用可能因为存在两种不同的机制而使得结果较为复杂.对于不同高度波纹壁,发现高度较低的波纹壁,其作用效果强弱与波纹壁高度成正相关,而更高的波纹壁则会减弱其作用效果.与DNS结果相比,线性稳定性理论可以定性预测波纹壁对高频吹吸扰动的作用,但在波纹壁附近的强非平行性区域误差较大.  相似文献   

3.
The disturbances generated by external turbulence in the boundary layer on a flat plate set suddenly in motion are determined. A turbulent flow calculated by direct numerical simulation is taken as the initial conditions. The solution obtained simulates the initial stage of laminar-turbulent transition in the flat-plate boundary layer at a high turbulence level in the oncoming flow. The solution makes it possible to estimate the effects of different factors, such as nonstationarity, nonlinearity, and the parameters of the freestream velocity fluctuation spectrum, on disturbance enhancement in the boundary layer.  相似文献   

4.
A numerical algorithm and code are developed and applied to direct numerical simulation (DNS) of unsteady two-dimensional flow fields relevant to stability of the hypersonic boundary layer. An implicit second-order finite-volume technique is used for solving the compressible Navier–Stokes equations. Numerical simulation of disturbances generated by a periodic suction-blowing on a flat plate is performed at free-stream Mach number 6. For small forcing amplitudes, the second-mode growth rates predicted by DNS agree well with the growth rates resulted from the linear stability theory (LST) including nonparallel effects. This shows that numerical method allows for simulation of unstable processes despite its dissipative features. Calculations at large forcing amplitudes illustrate nonlinear dynamics of the disturbance flow field. DNS predicts a nonlinear saturation of fundamental harmonic and rapid growth of higher harmonics. These results are consistent with the experimental data of Stetson and Kimmel obtained on a sharp cone at the free-stream Mach number 8.  相似文献   

5.
Direct numerical simulations of instability development and transition to turbulence in a supersonic boundary layer on a flat plate are performed. The computations are carried out for moderate supersonic (free-stream Mach number M = 2) and hypersonic (M = 6) velocities. The boundary layer development is simulated, which includes the stages of linear growth of disturbances, their nonlinear interaction, stochastization, and turbulent flow formation. A laminar–turbulent transition initiated by distributed roughness of the plate surface at the Mach number M = 2 is also considered.  相似文献   

6.
The effect of a concentrated external disturbance on the boundary layer of a plate was investigated in the framework of the reaction of boundary layers to external disturbances. A disturbance localized above the surface of the plate was introduced into the external flow. Measurements revealed the generation of Tollmien—Schlichting waves in the boundary layer; in conjunction with the results of the earlier studies [1, 2], this shows that a concentrated external disturbance is an effective means of generating characteristic oscillations in a boundary layer.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 155–159, July–August, 1980.  相似文献   

7.
Previous studies on boundary layer transition at moderate levels of free stream turbulence (FST) have shown that the transition process can be promoted by the introduction of Tollmien-Schlichting (TS) waves. In the present work the interaction between localized boundary layer disturbances and controlled TS-waves is studied experimentally. The localized disturbances are generated either from a controlled free stream perturbation, or by means of suction or injection through a slot in the flat plate surface. Both methods result in boundary layer disturbances dominated by elongated streamwise streaks of high and low velocity in the streamwise component. A strong interaction is observed preferably for high frequency TS-waves, which are damped when generated separately, and the interaction starts as a local amplification of a wide band of low-frequency oblique waves. The later stages of the transition process can be identified as a non-linear interaction between the oblique structures, leading to regeneration of new and stronger streamwise streaks.  相似文献   

8.
A theoretical explanation of some experimentally observed phenomena associated with the so-called Klebanoff modes is obtained by analyzing the flow over a finite thickness flat plate resulting from a small-amplitude distortion imposed on the upstream mean flow. The analysis shows (among other things) how the stretching of the vortex lines around the plate leads to streamwise vorticity at the plate surface, which then produces a streamwise velocity perturbation within the boundary layer that can be related to the experimentally observed Klebanoff mode. The complete evolution of this flow must be found by solving the boundary-region equations of Kemp (1951) and Davis and Rubin (1980), but a limiting analytical solution can also be obtained. Since the initial growth of the boundary-layer disturbance is nearly algebraic, our results demonstrate how the algebraically growing disturbances promoted by Landahl and others can be generated by a realistic external-disturbance environment. The relationship between these results and various bypass transition mechanisms is discussed. Received 3 January 1997 and accepted 14 April 1997  相似文献   

9.
A laminar boundary layer separates in a region of adverse pressure gradient on a flat plate and undergoes transition. Finally the turbulent boundary layer reattaches, forming a laminar separation bubble (LSB). Laminar-turbulent transition within such a LSB is investigated by means of Laser-Doppler-Anemometry (LDA), Particle Image Velocimetry (PIV), and direct numerical simulation (DNS). The transition mechanism occurring in the flow-field under consideration is discussed in detail. Observations for the development of small disturbances are compared to predictions from viscous linear instability theory (Tollmien–Schlichting instability). Non-linear development of these disturbances and their role in final breakdown to turbulence is analyzed.  相似文献   

10.
This paper reports results of experiments on controlling longitudinal structures in the boundary layer on a at plate. The longitudinal structures were generated by a controlled vortical disturbance of the external flow by means of a distributed susceptibility mechanism. It is shown that riblets reduce the intensity of both stationary and traveling disturbances. The linear and weakly linear stages in the development of disturbances in the boundary layer are the most favorable for the use of riblets.__________Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 46, No. 4, pp. 47–54, July–August, 2005.  相似文献   

11.
The receptivity of a laminar boundary layer to free stream disturbances has been experimentally investigated through the introduction of deterministic localized disturbances upstream of a flat plate mounted in a wind tunnel. Hot-wire measurements indicate that the spanwise gradient of the normal velocity component (and hence the streamwise vorticity) plays an essential role in the transfer of disturbance energy into the boundary layer. Inside the laminar boundary layer the disturbances were found to give rise to the formation of longitudinal structures of alternating high and low streamwise velocity. Similar streaky structures exist in laminar boundary layers exposed to free stream turbulence, in which the disturbance amplitude increases in linear proportion to the displacement thickness. In the present study the perturbation amplitude of the streaks was always decaying for the initial amplitudes used, in contrast to the growing fluctuations that are observed in the presence of free stream turbulence. This points out the importance of the continuous influence from the free stream turbulence along the boundary layer edge.  相似文献   

12.
Parabolized stability equations (PSE) were used to study the evolution of disturbances in compressible boundary layers.The results were compared with those ob- tained by direct numerical simulations (DNS),to check if the results from PSE method were reliable or not.The results of comparison showed that no matter for subsonic or supersonic boundary layers,results from both the PSE and DNS method agreed with each other reasonably well,and the agreement between temperatures was better than those between velocities.In addition,linear PSE was used to calculate the neutral curve for small amplitude disturbances in a supersonic boundary layer.Compared with those obtained by linear stability theory (LST),the situation was similar to those for incom- pressible boundary layer.  相似文献   

13.
The stability of an infinite elastic plate in supersonic gas flow is investigated taking into account the presence of the boundary layer formed on the plate surface. The effect of viscous and temperature disturbances of the boundary layer on the behavior of traveling waves is studied at large but finite Reynolds numbers. It is shown that in the case of the small boundary layer thickness viscosity can have both stabilizing and destabilizing effect depending on the phase velocity of disturbance propagation.  相似文献   

14.
The research on boundary-layer receptivity is the key issue for the laminarturbulent transition prediction in fluid mechanics. Many of the previous studies for local receptivity are on the basis of the parallel flow assumption which cannot accurately reflect the real physics. To overcome this disadvantage, local receptivity in the non-parallel boundary layer is studied in this paper by the direct numerical simulation (DNS). The difference between the non-parallel and parallel boundary layers on local receptivity is investigated. In addition, the effects of the disturbance frequency, the roughness location, and the multiple roughness elements on receptivity are also determined. Besides, the relations of receptivity with the amplitude of free-stream turbulence (FST), with the roughness height, and with the roughness length are ascertained as well. The Tollmien- Schlichting (T-S) wave packets are excited in the non-parallel boundary layer under the interaction of the FST and the localized wall roughness. A group of T-S waves are separated by the fast Fourier transform. The obtained results are in accordance with Dietz’s measurements, Wu’s theoretical calculations, and the linear stability theory (LST).  相似文献   

15.
The temporal evolutions of small, streamwise elongated disturbances in the asymptotic suction boundary layer (ASBL) and the Blasius boundary layer (BBL) are compared. In particular, initial perturbations localized (δ-functions) in the wall-normal direction are studied, corresponding to an axi-symmetric jet coming out of a plane parallel to the flat plate. Analytical solutions are presented for the wall-normal and streamwise velocities in the ASBL case whereas both analytical and numerical methods are used for the BBL case. The initial position of the perturbation and its spanwise wave number are varied in a parameter study. We present results of maximum amplitudes obtained, the time to reach them, their position and optimal spanwise scales. Free-stream disturbances are shown to migrate towards the wall and reach their (negative) optimum inside the boundary layer. The migration is faster for the ASBL case and a larger amplitude is reached than for the BBL. For perturbations originating inside the boundary layer the amplitudes are overall larger and show the phenomenon of overshoot, i.e. positive amplitudes moving out of the boundary layer. The overall largest amplitudes are obtained for the BBL case, as in other studies, but it is shown that for free-stream disturbances initiated somewhere downstream the leading edge streak growth may be amplified due to suction since in the BBL the disturbance mainly advects above the boundary layer.  相似文献   

16.
Boundary layers that develop over a body in fluid flow are in most cases three-dimensional owing to the spin, yaw, or surface curvature of the body. Therefore, the study of three-dimensional (3D) boundary-layer transition is essential to work in practical aerodynamics. The present investigation is concerned with the problem of 3D boundary layers over a yawed body. A yawed cylinder model that represents the leading edge portion of a swept wing and the mechanism of crossflow instability are investigated in detail using hot-wire velocimetry and a flow visualization technique. As a result, traveling disturbances having frequencies f1 and f2, which differ by about one order of magnitude, are detected in the transition region. The phase velocities and directions of travel of those disturbances are measured. Results for the low-frequency disturbance f1 show qualitative coincidence with results numerically predicted for a crossflow unsteady disturbance. Nameley, F1 travels nearly spanwise to the yawed cylinder and very close to the cylinder wall. The results for the high-frequency disturbance f2 good agreement with the existing experimental results. The 2 disturbance is found to be the high-frequency inflectional secondary instability that appears in 3D boundary layer transition in general. A two-stage transition process, where stationary crossflow vortices appear as the primary instability and a traveling inflectional disturbance is generated as a secondary instability, was observed. Secondary instability seems to play a major role in turbulent transition.  相似文献   

17.
The spatial evolution of 2-D disturbances in supersonic sharp cone boundary layers was investigated by direct numerical simulation (DNS) in high order compact difference scheme. The results suggested that, although the normal velocity in the sharp cone boundary layer was not small, the evolution of amplitude and phase for small amplitude disturbances would be well in accordance with the results obtained by the linear stability theory (LST) which supposes the flow was parallel. The evolution of some finite amplitude disturbances was also investigated, and the characteristic of the evolution was shown. Shocklets were also found when the amplitude of disturbances increased over some value.  相似文献   

18.
The nth-order expansion of the parabolized stability equation(EPSEn) is obtained from the Taylor expansion of the linear parabolized stability equation(LPSE) in the streamwise direction. The EPSE together with the homogeneous boundary conditions forms a local eigenvalue problem, in which the streamwise variations of the mean flow and the disturbance shape function are considered. The first-order EPSE(EPSE1) and the second-order EPSE(EPSE2) are used to study the crossflow instability in the swept NLF(2)-0415 wing boundary layer. The non-parallelism degree of the boundary layer is strong. Compared with the growth rates predicted by the linear stability theory(LST),the results given by the EPSE1 and EPSE2 agree well with those given by the LPSE.In particular, the results given by the EPSE2 are almost the same as those given by the LPSE. The prediction of the EPSE1 is more accurate than the prediction of the LST, and is more efficient than the predictions of the EPSE2 and LPSE. Therefore, the EPSE1 is an efficient e~N prediction tool for the crossflow instability in swept-wing boundary-layer flows.  相似文献   

19.
The development of three-dimensional wave packets artificially introduced into a boundary layer has been experimentally investigated. The measurements were made by the hot-wire anemometer method in the boundary layer on a flat plate at a Mach number M = 4. The artificial disturbances were introduced into the boundary layer by means of an electric discharge. A Fourier analysis of the data made it possible to obtain the wave characteristics of the plane waves. The composition of the disturbances was analyzed and those most dangerous from the instability standpoint were identified. The data obtained are compared with the results of experiments carried out at M = 2. The differences in the data are discussed.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 54–58, November–December, 1990.  相似文献   

20.
In the region of transition from a two-dimensional laminar boundary layer to a turbulent one, three-dimensional flow occurs [1–3]. It has been proposed that this flow is formed as the result of nonlinear interaction of two-dimensional and three-dimensional disturbances predicted by linear hydrodynamic stability theory. Using many simplifications, [4, 5] performed a calculation of this interaction for a free boundary layer and a boundary layer on a wall with a very coarse approximation of the velocity profile. The results showed some argreement with experiment. On the other hand, it is known that disturbances of the Tollmin—Schlichting wave type can be observed at sufficiently high amplitude. This present study will use the method of successive linearization to calculate the primary two- and three-dimensional disturbances, and also the average secondary flow occurring because of nonlinear interaction of the primary disturbances. The method of calculation used is close to that of [4, 5], the disturbance parameters being calculated on the basis of a Blazius velocity profile. A detailed comparison of results with experimental data [1] is made. It developed that at large disturbance amplitude the amplitude growth rate differs from that of linear theory, while the spatial distribution of disturbances agree s well with the distribution given by the natural functions and their nonlinear interaction. In calculating the secondary flow an experimental correction was made to the amplitude growth rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号