首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High resolution (0.004cm-1 instrumental bandwidth) interferometric Fourier transform infrared spectra of 14ND3 were obtained on a BOMEM DA002 spectrometer under essentially Doppler limited conditions. An analysis is reported of the ND3 stretching fundamentals with band centres at [EQUATION]1 0 (sa) = (2420.056 ± 0.001)cm?1, [EQUATION]1 0(as) = (2420.650 ± 0.001)cm?1, [EQUATION]3 0(aa) = (2563.8840 ± 0:0005)cm?1 and [EQUATION]3 0 (ss) = (2563.9161 ± 0.0005)cm?1, with inversion tunnelling splittings Δ[EQUATION]1 = 0.5412cm?1 and Δ[EQUATION]3 = 0.0209cm?1 in the vibrationally excited levels. About 50 parameters of the effective Hamiltonian for this band system could be determined accurately. Assignments were established with certainty by means of ground state combination differences. The results are important for and are discussed in relation to the mode selective inhibition and promotion of inversion at the nitrogen atom by exciting ND stretching vibrations, and treatments of isotope e? ects on inversion of ammonia by means of effective Hamiltonians and true molecular Hamiltonians on high dimensional potential hypersurfaces.  相似文献   

2.
We report results from measurements of the high resolution FTIR spectrum for the fully deuterated benzene molecule C6D6 in the range 450–3500 cm?1. Accurate spectroscopic constants have been obtained for the fundamental vibration ν11 at 496.208 cm?1 and improved ground state constants have been deduced from a fit of ground state combination differences. The J structure of the combination parallel bands ν2 + ν11 (at 2798.1 cm?1), ν5 + ν12 (1802.5 cm?1) and ν7, + ν16 (2619.3 cm?1) of C6D6 has been analysed as well, from which improved values of the band origin and of the B and D j constants of the excited states have been obtained. The strongest hot bands accompanying these parallel transitions have been assigned by means of the anharmonic force field calculated by Maslen et al. [1992, J. chem. Phys., 97, 4233]. In particular (ν11 + ν16) ? ν16 is assigned to the band at 492.4 cm?1 even though its shape is typical of a perpendicular transition (PAPE). New values for the ν5, ν12 and ν16 band origins are determined from the band origins of combination bands and from calculated anharmonic constants. Numerous anharmonic constants are derived from the assignment of hot band and combination transitions.  相似文献   

3.
The fundamental vibration-rotation band of SH (X2Π) has been studied in absorption at Doppler-limited resolution with an estimated accuracy of 0.002 cm?1. The band origin (ν0 = 2598.7675 ± 0.0003 cm?1) and the molecular constants for the excited vibrational state (v = 1), as well as improved molecular constants for the ground vibrational state, have been determined in a least-squares fit.  相似文献   

4.
Abstract

The high resolution (0.0010cm?1) Fourier transform infrared spectra of the partially deuterated methyl iodide molecules CH2DI and CHD21 have been recorded and analysed in the ν3 band regions around 510cm?1. The fundamental band ν3 is associated with the stretching of the C-I bond and the spectra appear therefore as an asymmetric rotor hybrid a/b-type band and hybrid a/c-type band for CH2DI and CHD2I, respectively. About 4700 transitions in the case of CH2DI and about 3900 transitions in the case of CHD2I have been assigned. The ground state rotational constants of CH2DI and CHD2I have been obtained using the ground state combination differences calculated from the assigned ν3 transitions and 16 microwave transitions from literature. The S reduced Watson's Hamiltonian has been used in the calculations. In addition, the upper state parameters describing the v3=1 vibrational states of these molecules have been determined. The obtained ground state constants as well as the upper state parameters have been compared to the corresponding constants of the symmetric top species CH3I and CD3I  相似文献   

5.
The Fourier transform infrared spectrum of the v11 band of ethylene-d4 (C2D4) has been recorded with an unapodized resolution of 0.006 cm?1 in the frequency range 2150 to 2250cm?1. The v11 band, with a band centre of about 2201 cm?1, was found to be perturbed by the nearby v2 + v7 band centred at about 2235 cm?1 by a b-type Coriolis interaction. By fitting a total of 772 infrared transitions of v11 using a Watson's A-reduced Hamiltonian in the Ir representation with the inclusion of b-type Coriolis interaction term, two sets of constants, up to quartic distortion constants for the v11 = 1 state, and principal rotational constants for the v2 + v7 = 1 dark state, were derived. The inertia defect of the v11 state was found to be 0.0693 ± 0.0004u Å2.  相似文献   

6.
Abstract

The effect of temperature on the absorption spectra from 50 to 3200 cm?1 of a number of amine semiperchlorates and perchlorates of amines with two basic centres in which the hydrogen bridges (N [sbnd] H…N)+ are formed, was investigated. Three broad absorption regions may be distinguished in the spectrum, viz., between 100 and 900 cm?1, 600 and 1800 cm?1 and 1700 and 2900 cm?1. The latter one may be assigned to the stretching vibration νS (N [sbnd] H…N).

A shift of this band peak (which is usually a doublet at room temperature for aromatic amines) towards longer wavelengths on decreasing the temperature may be an evidence that the bridge becomes shorter. Simultaneously with these changes, most salts under investigation exhibit a strong increase in low-frequency absorption intensity at about 400–600 cm?1. It may be suggested that this absorption results from a transition between the split levels of the zero vibrational state.  相似文献   

7.
The infrared spectrum of chloroform in the region of the parallel fundamental band ν3 around 367 cm?1 has been measured with a Fourier spectrometer at a resolution of 0.001 cm?1. An isotopically pure sample of CH35Cl3 was used. More than 5000 lines were assigned in the ν3 band. A reanalysis of the ground state constants was performed by combining 1671 combination differences from this work, 712 differences from a previous study of the ν2 band, and 80 millimetre wave lines from the literature. In the analysis of the ν3 band, a model of an unperturbed symmetric top band was applied. The data were fitted with a standard deviation of 0.18 × 10?3 cm?1, and the following leading parameters were obtained: ν0 = 367.295 550(8) cm?1, B 3B 0 = ?77.058(4) × 10?6 cm?1 and C 3C 0 = ?18.600(11) × 10?6 cm?1. In addition, several hot bands have been studied. The isotopic effects were studied also by analysing spectra of the isotopically natural sample.  相似文献   

8.
The cw dye laser excitation spectrum of the A?1A″(050) ← X?1A′(000) vibronic band of HCCl was observed between 16 539 and 16 656 cm?1 with the Doppler-limited resolution, 0.03 cm?1. The HCCl molecule was generated by the reaction of discharged CF4 with CH3Cl. The observed spectra were assigned to c-type transitions with ΔKa = ±1 and also to axis-switching transitions with ΔKa = 0 or ?2, but all with Ka = 0, both for HC35Cl and HC37Cl. A rotational analysis yielded the rotational constants and quartic centrifugal distortion constants for the ground vibronic state and the band origin. A weak vibronic band, about one-third as intense as the main band, was found at about 57 cm?1 to the violet of the main band for both isotopic species, and was ascribed to a transition from the ground vibronic state to a vibrational level, possibly (041), of the à state. The rotational levels of HC35Cl in the à state showed a large perturbation; the J′ = 8, 9, and 10 levels were found to be split into two components. A normal coordinate analysis was carried out to calculate the centrifugal distortion constants and the inertia defect, which were in fair agreement with the observed values. The molecular structure of HCCl in the ground vibronic state was recalculated from the rotational constants of the two isotopic species combined with the 0.75B0 + 0.25C0 value previously reported for DC35Cl.  相似文献   

9.
The infrared spectrum of C3D4 was measured in the region of the paralled band of the CC stretching vibration ν6 centered at ν0 = 1920.2332 cm?1 on a high-resolution Fourier transform spectrometer and deconvolved to a linewidth of 12 of the Doppler width (~0.0023 cm?1). The high resolution reveals the presence of strong perturbations in the K = 4 and K = 8 to 12 levels of the ν6 upper state. For a quantitative treatment of the observed transitions, a Hamiltonian matrix including six different perturbing states was constructed and used to refine the 6 spectroscopic constants of the ν6 state and 20 of the constants for the perturbing states. Measurement of the hot band ν6 + ν11 ? ν11 whose band center is at 1916.200 cm?1 yielded the anharmonic constant x6,11 = ?4.033 cm?1.  相似文献   

10.
The infrared spectrum of CH2D2 has been recorded between 1100 and 1360 cm?1 with a SISAM-type spectrometer whose resolution limit is about 0.015 cm?1 in our spectrum. Some lines have been identified as transitions of the ν3 parallel band of CH3D. The band center ν = 1236.2786 ± 0.0010 cm?1 and a set of upper state constants was obtained for the ν9 band of CH2D2. A perturbation was pointed out in ν9; nevertheless, all frequencies have been fitted with a standard deviation of 3.8 × 10?3 cm?1.  相似文献   

11.
The infrared spectrum of the ν2 band of nitric acid (HNO3) has been measured with a tunable diode laser in the frequency interval from 1690 to 1727 cm?1. A total of 430 assigned transitions have been analyzed to yield a set of nine rovibrational constants for the upper state with a standard deviation of 0.0012 cm?1. The band is primarily B type with a band center at 1709.568 ± 0.005 cm?1. Because of the absence of perturbations, the band constants can be used to calculate transition frequencies and relative intensities with a high degree of accuracy.  相似文献   

12.
The absorption spectrum of ethane was recorded at 0.014 cm?1 resolution in the range 4500–6500 cm?1 using a Fourier transform spectrometer and at room temperature. Eighteen bands could be identified and their type assigned. Upper state rotational constants are provided for the band at 5948.338 cm?1 and Coriolis constants are obtained for most perpendicular bands. Vibrational assignments are suggested for the bands at 5948 cm?1 (v7 + v10), 5914 cm?1(v8 + v 10+ v 11), and 5852cm?1 (v 5+v 10). All vibrational bands reported in the literature are gathered.  相似文献   

13.
Rotational analysis of the (0,0) band of the B2Σ-X2Σ transition of ScS is reported. Spectrographic illustration of a hyperfine coupling transition in the ground state is demonstrated for the first time. This enables an order of magnitude to be obtained for γ″ (~0.003 cm?1). The results for the other constants were: X state: B″ = 0.1971 cm?1, D″ = 5 × 10?8cm?1, 4b = 0.23 cm?1 (equal to that for ScO within the limits of measurement uncertainty); B state: B′ = 0.1853 cm?1, D′ = 6 × 10?8cm?1, γ′ = ?0.0594 cm?1, which can be compared with pA2Π = 0.060 cm?1. It was found that the two excited states A2Π and B2Σ constitute an excellent example of pure precession (ppp = 0.058 cm?1, and this enables the vibrational levels of A2Π to be numbered.  相似文献   

14.
The ν2 + ν3 band of 14N16O2 has been recorded with resolution of 0.028 cm?1. Ground state and upper state rotational constants have been obtained. The band center obtained, ν0 = 2355.1517 ± 0.0011 cm?1 (error cited is 3σ), has been combined with the band centers recently determined for ν3 and ν2 to calculate X23 = ?11.348 ± 0.020 cm?1 where the uncertainty cited is based on reasonable estimates of the absolute frequency error.  相似文献   

15.
Frequency measurements are given for the 0001-0000 and 0111-0110 bands of N2O from 1257 to 1340 cm?1. The measurements utilize heterodyne techniques by measuring small frequency differences between a tunable diode laser locked to the center of an N2O absorption line and harmonic combinations of frequencies of radiation from two CO2 Lamb-dip-stabilized lasers. The measurements are facilitated by the use of the CO laser as a transfer laser whose frequency is also measured. These measurements have been combined with other data to provide new band constants and frequency calibration tables for several band systems of N2O in the following regions; 1215 to 1340, 1816 to 1930, and 2135 to 2268 cm?1. A correction factor is also provided for existing calibration tables near 590 cm?1.  相似文献   

16.
The polarized Raman scattering from small single crystals of Cu2HgI4 provided assignments for the more prominent Raman features to specific irreducible representations. The E symmetry assignment, mass dependence, and pressure dependence of the 36 cm?1 band in Cu2HgI4 and 24 cm?1 band in Ag2HgI4 indicate that these features approximate the attempt frequency for ion hopping. The unusually high pre-exponential factor in the Arrhenius expression for ion hopping is discussed in light of the observed attempt frequency; we conclude that despite the high activation energy the conduction mechanism is similar to other heavy-metal solid electrolytes.  相似文献   

17.
The absorption spectrum of trideuteromethane was recorded in the range 900–1400 cm?1 with a resolution of 0.020–0.025 cm?1. The ν5 band centered at 1292.499 cm?1 is analyzed here. A fit based on 869 observed transitions including J′ values up to 22, leads to a set of spectroscopic constants suitable for energy calculations in the upper-state v5 = 1. These constants reproduce the experimental wavenumbers with a standard deviation equal to 0.008 cm?1. The tabulated line strengths are calculated on the basis of the value S = 27.1 cm?2 atm?1 at 300 K, measured by Hiller and Straley, for the band strength of ν5. A useful comparison is made between the values now derived for some constants and the corresponding ones predicted by Gray and Robiette in their recent force field calculations of methane and isotopic species.  相似文献   

18.
Abstract

Intracavity laser spectroscopy has been applied for investigation of absorption spectrum of HfCl molecule. In the region 560–700 nm 59 bands have been obtained. Rotational structure analysis of 0–0 band indicated that Hund's case (c) of angular moment coupling applied to this molecule. The molecular constants (cm?1) calculated for upper and ground electronic states are: ω′ = 353.05 cm?1, ω″ = 379.65 cm?1, B′=0.21486 cm?1 B″ = 0.21801 cm?1.  相似文献   

19.
Abstract

The FIR transmission of an YBa2Cu3O7-δ film 1000 Å thick deposited on an MgO plate has been studied from 20 cm?1 to 4000 cm?1 at T = 300 K, and at 120 K, 80 K and 7 K. i) The spectra for the normal state are well fitted if a mid-IR oscillator of high strength and high damping is added to the simplest Drude model. ii) The spectra for the superconductive state do not show significant variations of transmission vs. temperature for ω > 120 cm?1, which should be in agreement with a weak BCS coupling 2Δ = 3.5 kTc . iii) The FIR transmission at 7 K for ω = 20 cm?1 is not zero (around 1%) and seems to confirm that the low-temperature perovskite is made of two phases: a superconducting, and a normal one, the proportion of the first one increasing when the film temperature is decreased.  相似文献   

20.
Abstract

Mn+ ions in off-centre position along [100] have been produced in BaF2:Mn by X-irradiation at LNT. Their EPR spectra are characterized by g-2. 0107. D = 265.8·10?4cm?1. A = 122.9·10?4cm?11 and a superhyperfine structure arising from 8 surrounding F? nuclei. In the optical absorption spectrum they show up by a band at 411 nm. This behaviour is compared with the results found for SrF2:Mn. After X-irradiation at room temperature beside a different Mn+ centre two species of Mn0 appear in non-cubic position. Both interact dominantly with two F? neighbours. Possible models for these species are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号