首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The infrared spectrum of the nu(12) fundamental band of ethylene (C(2)H(4)) has been measured with an unapodized resolution of 0.004 cm(-1) in the frequency range of 1380-1500 cm(-1) using the Fourier transform technique. By assigning and fitting a total of 1387 infrared transitions using a Watson's A-reduced Hamiltonian in the I(r) representation, rovibrational constants for the upper state (v(12) = 1) up to five quartic and three sextic centrifugal distortions terms were derived. They represent the most accurate constants for the band so far. The rms deviation of the fit was 0.00033 cm(-1). The A-type nu(12) band with a band center at 1442.44299 +/- 0.00003 cm(-1) was found to be relatively free from local frequency perturbations. The inertial defect Delta(12) was found to be 0.24201 +/- 0.00002 u ?(2). Copyright 2000 Academic Press.  相似文献   

2.
The high resolution (0.004cm?1) Fourier transform infrared spectrum of the monodeuterated form of methyl fluoride, CH2DF, has been recorded and analysed in the v 3 and v 4 band region around 1420cm?1. Both bands, coming from A′ symmetry vibrations, have a/b hybrid character, although in v 3 the b-type component prevails over the a-type. The rotational structure has been analysed using a dyad model including c-type Coriolis coupling and high order vibrational resonance between these states. Accurate upper state molecular parameters and interaction terms have been obtained by fitting about 3270 assigned transitions to Watson's A-reduced Hamiltonian in the Ir representation. In addition, from a simultaneous fit of ground state combination differences coming from this analysis and 42 literature microwave transitions, an improved and more complete set of ground state constants, including three new sextic centrifugal distortion terms (ΦJK, ΦKJ and ΦK), has been derived.  相似文献   

3.
High-resolution Fourier transform spectrum of phosphine (PH3) at room temperature has been recorded in the region of the 3ν2 band (2730-3100 cm−1) at an apodized resolution of 0.005 cm−1. About 200 vibration-rotation transitions have been least squares fitted with an rms of 0.00039 cm−1 after taking into account the ΔK = ±3 interaction.  相似文献   

4.
The Fourier transform infrared spectrum of the v11 band of ethylene-d4 (C2D4) has been recorded with an unapodized resolution of 0.006 cm?1 in the frequency range 2150 to 2250cm?1. The v11 band, with a band centre of about 2201 cm?1, was found to be perturbed by the nearby v2 + v7 band centred at about 2235 cm?1 by a b-type Coriolis interaction. By fitting a total of 772 infrared transitions of v11 using a Watson's A-reduced Hamiltonian in the Ir representation with the inclusion of b-type Coriolis interaction term, two sets of constants, up to quartic distortion constants for the v11 = 1 state, and principal rotational constants for the v2 + v7 = 1 dark state, were derived. The inertia defect of the v11 state was found to be 0.0693 ± 0.0004u Å2.  相似文献   

5.
The Fourier transform infrared (FTIR) spectrum of the nu(6) band of formic acid (HCOOH) has been recorded with a resolution of 0.0024 cm(-1) in the spectral range 1050-1160 cm(-1). The nu(6) band was found to be strongly perturbed by the nearby nu(8) band centered at about 1033.5 cm(-1). Using a Watson's A-reduced Hamiltonian in the I(r) representation, and with the inclusion of a-type Coriolis coupling constant, a simultaneous fit of nu(6) and nu(8) was performed. A total of 2485 infrared transitions including about 700 perturbed transitions of nu(6) and 19 transitions of nu(8) was fitted with an rms uncertainty of 0.0006 cm(-1). Accurate rovibrational constants up to sextic order for both nu(6) and nu(8) were obtained. The nu(6) band was analyzed to be a type AB hybrid with a band center at 1104.852109 +/- 0.000050 cm(-1). The band center for nu(8) was found to be 1033.4647 +/- 0.0021 cm(-1). Copyright 2000 Academic Press.  相似文献   

6.
We study the phase diagram of composite fermions (CFs) in the presence of spin and pseudospin degrees of freedom in the bilayer nu=2/3 quantum Hall (QH) state. Activation studies elucidate the existence of three different QH states with two different types of hysteresis in the magnetotransport. While a noninteracting CF model provides a qualitative account of the phase diagram, the observed renormalization of tunneling gap and a non-QH state at high densities are not explained in the noninteracting CF model, and are suggested to be manifestations of interactions between CFs.  相似文献   

7.
A high-resolution (0.002 cm−1) infrared absorption spectrum of methylene fluoride-d2 (CD2F2) of the lowest fundamental mode ν4 in the region from 460 to 610 cm−1 has been measured on a Bruker IFS 120-HR Fourier transform infrared spectrometer. More than 3500 transitions have been assigned in this B-type band centered at 521.9 cm−1. The data have been combined with upper state pure rotational measurements in a weighted least-squares fit to obtain molecular constants for the upper state resulting in an overall standard deviation of 0.00018 cm−1. Accurate value for the band origin (521.9578036 cm−1) has been obtained and inclusion of transitions with very high J (?60) and Ka (?34) values has resulted in improved precision for sextic centrifugal distortion constants, in particular DK, HKJ, and HK.  相似文献   

8.
High-resolution infrared spectra of the nu(1) and nu(2) bands of DCCCl were observed using Bruker IFS 120HR Fourier transform spectrometers at resolutions of 0.0044 and 0.0035 cm(-1), respectively. For the DCC(35)Cl isotopomer, the nu(1) as well as the nu(2) band was found to be heavily perturbed. Detailed analyses revealed that the nu(1) state is in resonance with the l=0 substate of the nu(3)+4nu(4) state and that the nu(2) state is in resonance with the l=0 substate of the nu(3)+4nu(5) state. The rotational constants played a key role in identifying the perturbing states. In contrast, for the DCC(37)Cl isotopomer, the rotational structures of the nu(1) and nu(2) states are almost regular but slightly perturbed by interactions with the nu(3)+4nu(4) and nu(3)+4nu(5) states, respectively. The constants of resonances as well as the molecular constants for the nu(1), nu(2), nu(3)+4nu(4) and nu(3)+4nu(5) states were determined. Copyright 2001 Academic Press.  相似文献   

9.
ABSTRACT

The high-resolution infrared spectrum of CHD279Br has been investigated by Fourier transform spectroscopy in the range 700–900?cm?1 at an unapodized resolution of 0.0035?cm?1. This spectral region is characterised by the absorptions of the ν5 (814.5185?cm?1) and ν9 (716.9649?cm?1) fundamental bands, corresponding to H–C–Br deformation and CD2 rocking modes, respectively. The ν5 vibration of symmetry species A gives rise to an a-/c-hybrid band with a predominant a-type component, while the ν9 mode of A′′ symmetry produces a b-type envelope. The spectral analysis resulted in the identification of 5290 (J?≤?63 and Ka?≤?13) and 1657 (J?≤?53 and Ka?≤?12) transitions for ν5 and ν9 bands, respectively. The assigned data were fitted using the Watson’s S-reduced Hamiltonian in the Ir representation and the v5?=?1 and v9?=?1 state parameters up to the quartic centrifugal distortion terms have been obtained. From spectral simulations the dipole moment ratio |Δμa/Δμc| of the ν5 band has been determined to be 1.4?±?0.1 while the intensity ratio between ν5 and ν9 fundamentals has been estimated to have a value of 4.3?±?0.5.  相似文献   

10.
High-resolution (0.002 cm?1) stimulated Raman spectroscopy has been applied to the study of both normal and satellite Q branches of the fundamental vibrational band of molecular oxygen. Using a pulsed molecular free-expansion jet to adiabatically cool the oxygen sample, satellite Q branches at 1554 and 1558 cm?1 that arise due to the splitting of the 3Σg ground state by spin-spin and spin-rotation interactions were completely resolved for the first time. Measured intensity ratios for the ΔNΔJ(J, N) = Q0(2, 1) and QR(1, 1) lines, and for the QS(0, 1) and QP(2, 1) lines compare favorably with that for a coupling case intermediate between Hund's cases (a) and (b). Depolarization ratios, measured for a series of QQ-branch (unresolved) triplets, give a value 0.164 ± 0.004 for the depolarization ratio of the fundamental vibrational band.  相似文献   

11.
12.
High-resolution FTIR spectra of 1,1,1-trifluoroethane (HFC-143a) have been recorded in the region from 1370 to 1470 cm(-1) with an unapodized resolution of 0.0016 cm(-1) at room temperature and of 0.004 cm(-1) at 183 and 100 K. The two main infrared active bands of A(1) symmetry have been shown to be nu(2) at 1407.5 cm(-1) and nu(4) + nu(5) at 1440.5 cm(-1). With the aid of Raman spectra, the two infrared inactive bands of E symmetry in this spectra region have been shown to be nu(8) at 1457.5 cm(-1) and nu(6) + nu(9) at 1446.2 cm(-1). The nu(2) band was analyzed as an isolated band, whereas the nu(4) + nu(5) band was analyzed as part of the triad nu(4) + nu(5), nu(6) + nu(9), and nu(8). Copyright 2000 Academic Press.  相似文献   

13.
We report laboratory intensity measurements for the weak nu9 (998.8 cm-1) and intense nu10 (841.1 cm-1) bands of allene. Allene is predicted to be a constituent of Titan's atmosphere, and measurements of its abundance would yield important information about the atmospheric chemistry of that body. Spectra were obtained at a temperature of 200 K (approximating Titan conditions) using the high-resolution FTS instrument at Kitt-Peak National Observatory's McMath-Pierce observatory. A total of 505 nu9 and 687 nu10 line intensities were fit using a least-squares method to accurately determine two sets of transition dipole moments. Integrated band intensities computed utilizing the fitted parameters were found to be 36 +/- 4% cm-2 atm-1 and 301 +/- 4% cm-2 atm-1 for nu9 and nu10, respectively, at 200 K. Copyright 1999 Academic Press.  相似文献   

14.
The spectrum of the nu(9) fundamental band of ethylene-d(4) (C(2)D(4)) has been measured with an unapodized resolution of 0.004 cm(-1) in the frequency range of 2300-2400 cm(-1) using a Fourier transform infrared spectrometer. A total of 549 transitions have been assigned and fitted using a Watson's A-reduced Hamiltonian in the I(r) representation to derive rovibrational constants for the upper state (v(9) = 1) up to five quartic terms with a standard deviation of 0.00087 cm(-1). They represent the most accurate rovibrational constants for the nu(9) band so far. About 30 transitions of K(a)(') = 0, one transition of nu(9) which were identified to be perturbed possibly by the nearby nu(11) and nu(2) + nu(12) transitions, were not included in the final fit. The nu(9) band of C(2)D(4) was found to be basically B-type with an unperturbed band center at 2341.836 94 +/- 0.000 13 cm(-1). Copyright 2000 Academic Press.  相似文献   

15.
The nu(12) band of trans-d(2)-ethylene (trans-C(2)H(2)D(2)) has been recorded with an unapodized resolution of 0.0024 cm(-1) in the frequency range of 1240-1360 cm(-1) by Fourier transform infrared (FTIR) spectroscopy. This band was found to be relatively free from any local frequency perturbations. By fitting a total of 1185 infrared transitions of nu(12) with a standard deviation of 0.00043 cm(-1) using a Watson's A-reduced Hamiltonian in the I(r) representation, a set of accurate rovibrational constants for v(12) = 1 state was derived. The nu(12) band is A type with a band center at 1298.03797 +/- 0.00004 cm(-1). Copyright 2000 Academic Press.  相似文献   

16.
A high-resolution (0.003 cm−1) infrared absorption spectrum of the first overtone of the fundamental mode ν8 of methylene fluoride (CH2F2) has been measured on a Bruker IFS 120-HR Fourier transform infrared spectrometer. More than 2000 ro-vibration transitions in the range of 2770-2900 cm−1 with J ? 45 and Ka ? 20 have been assigned in this B-type band centered at 2838.5 cm−1. Precise value for the band origin (2838.579799 cm−1) and centrifugal distortion constants up to third order (ΦJK, ΦKJ, and ΦK) have been obtained by fitting a total of 1474 unblended ro-vibration transitions (J ? 45 and Ka ? 13) of the 2ν8 band with a standard deviation of 0.00029 cm−1 using a Watson’s A-reduced Hamiltonian in the Ir representation. Signature of perturbations with nearby states has been seen.  相似文献   

17.
Infra-red spectra have been recorded for silyl fluoride and silyl fluoride-d 3 at a resolution of circa 0·3 cm-1. Rotational structure has been observed for parallel fundamentals in both molecules, and for all perpendicular fundamentals. In both SiH3F and SiD3F the A 1 and E species deformation modes interact strongly via a Coriolis perturbation; this has been analysed, and the band origin of v 5 for SiH3F is reassigned. A hybrid-orbital force field based on the experimental data is also reported.  相似文献   

18.
19.
20.
The effective operator approach is applied to the calculation of both line positions and line intensities of the (13)C(16)O(2) molecule. About 11 000 observed line positions of (13)C(16)O(2) selected from the literature have been used to derive 84 parameters of a reduced effective Hamiltonian globally describing all known vibrational-rotational energy levels in the ground electronic state. The standard deviation of the fit is 0.0015 cm(-1). The eigenfunctions of this effective Hamiltonian have then been used in fittings of parameters of an effective dipole-moment operator to more than 600 observed line intensities of the cold and hot bands covering the nu(2) and 3nu(2) regions. The standard deviations of the fits are 3.2 and 12.0% for these regions, respectively. The quality of the fittings and the extrapolation properties of the fitted parameters are discussed. A comparison of calculated line parameters with those provided by the HITRAN database is given. Finally, the first observations of the 2nu(1) + 5nu(3) and nu(1) + 2nu(2) + 5nu(3) absorption bands by means of photoacoustic spectroscopy (PAS) is presented. The deviations of predicted line positions from observed ones is found to be less than 0.1 cm(-1), and most of them lie within the experimental accuracy (0.007 cm(-1)) once the observed line positions are included in the global fit. Copyright 2000 Academic Press.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号